

New Zealand Wastewater Surveillance Programme COVID-19

Monthly Report October

Weeks ending 08 October to 29 October 2023 (weeks 40 to 43) Report prepared 01 November 2023

Key Trends & Insights

For the month of October, SARS-CoV-2 levels in wastewater averaged at 3.07 million genome copies per person per day (GC/p/d). During this period SARS-CoV-2 levels were highest in the week ending 29 October at 4.64 million GC/p/d

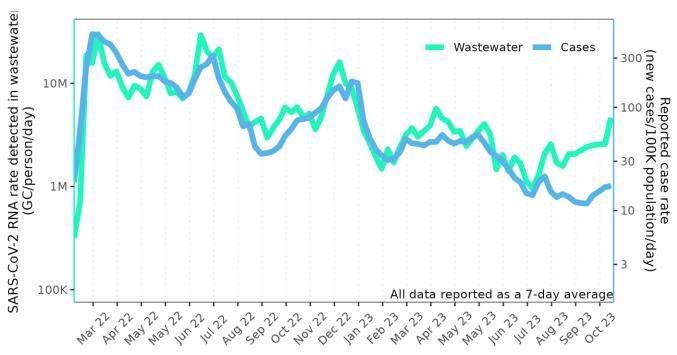
_		_	_
7		п	•
	 	v	•
	 		\boldsymbol{a}

Sites (44/44) where SARS-CoV-2 was detected.

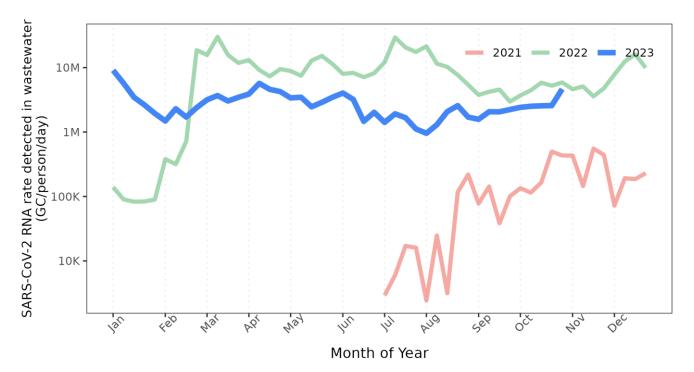
67%

NZ population covered by wastewater testing

EG.5


Most prevalent variant detected (30-52 %)

- In October 2023, 273 samples were collected across Aotearoa. SARS-CoV-2 RNA was detected in 269/273 (99%) of samples from 44/44 sites (100%).
- SARS-CoV-2 levels increased by the end of October 2023.
- As a group, the XBB family of lineages is predominant. The estimated national percentage of XBB, XBB.1.5, XBB.1.16 and EG.5 collectively was between 71% and 85% of sequences between weeks 39 and 42. The EG.5 variant was the most prevalent tracked variant, peaking at 52% of national sequences in week 42. HK.5 (a EG.5 descendent) increased in proportion, from 5% in week 39 to 19% in week 42.
- Since its first detection in September, BA.2.86 was detected at a number of sites this month, but remains at very low levels both locally and nationally.



National Results

National SARS-CoV-2 levels in wastewater and reported cases

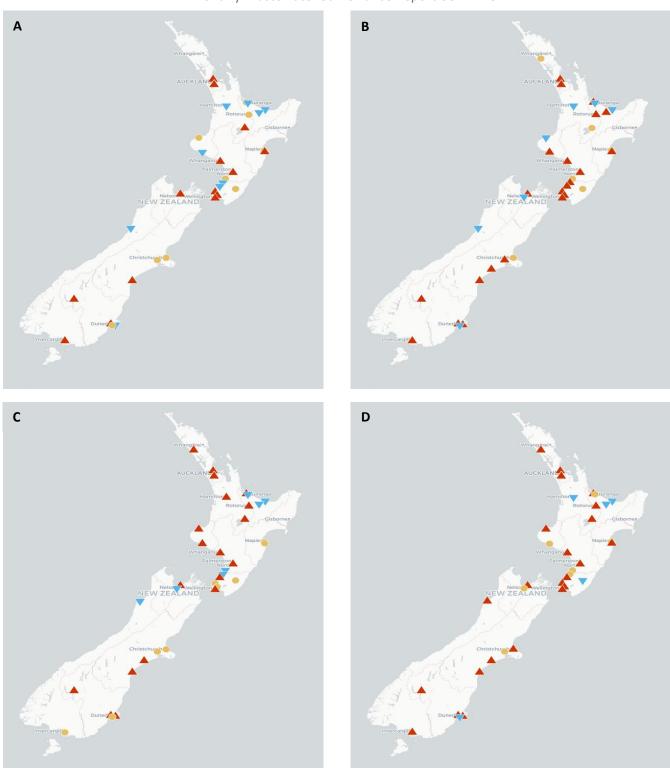
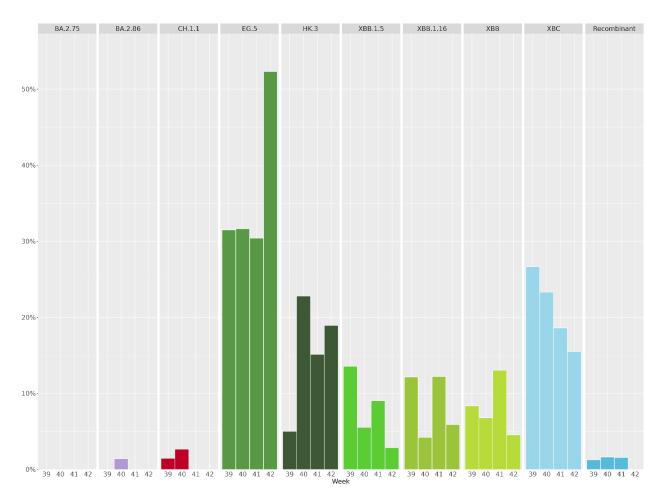


Figure 1. National timeseries of estimated SARS-CoV-2 wastewater rate (GC/person/day, green line) and reported case rate (new cases/100,000 population/day, blue line) on a log10 scale.

Figure 2. National timeseries of estimated SARS-CoV-2 wastewater rate (GC/person/day) from July 2021 to May 2023 on a log10 scale.

Figure 3. Comparison of SARS-CoV-2 levels for the week ending 29 October 2023, compared to levels measured: A) 1 week ago; B) 2 weeks ago; C) 4 weeks ago; D) 12 weeks ago. Only sites with results for both time points are included. When the viral quantity is 30% or more higher this is labelled as increased (red up arrow on map). When the viral quantity is 30% or more lower, this is labelled as decreased (blue down arrow on map). If viral levels have changed less than this in the compared weeks, this is labelled as no change (yellow circle on map). Interactive map of weekly results available publicly at https://www.poops.nz/

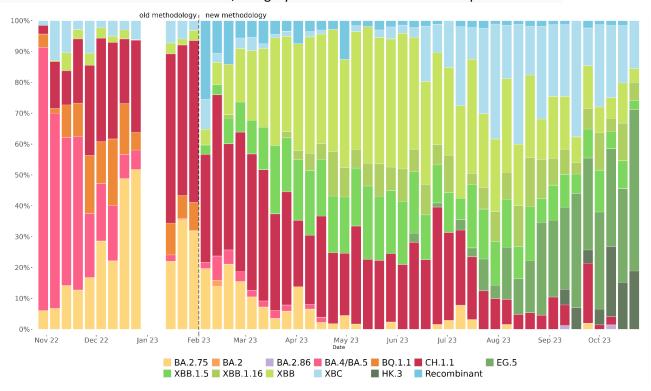

Variant Analysis

Results from the four weeks of sampling (week 39 to week 42) from up to 20 sentinel wastewater sites (Table 1) across Aotearoa New Zealand are reported.

EG.5 was the most prevalent nationally in wastewater throughout this period, with percentages ranging from 30% to 52% (Figures 4 and 5). This has also been reported from clinical surveillance. HK.3 (a specific descent of the EG.5 group) that was first detected in September in wastewater, increased in proportion from 5% in week 39, to an average of 19 % in weeks 40 to 42. Others in the XBB family of lineages including XBB.1.5 and XBB.1.16 were detected at similar levels from weeks 39 to 42 (~5-10% each week per variant).

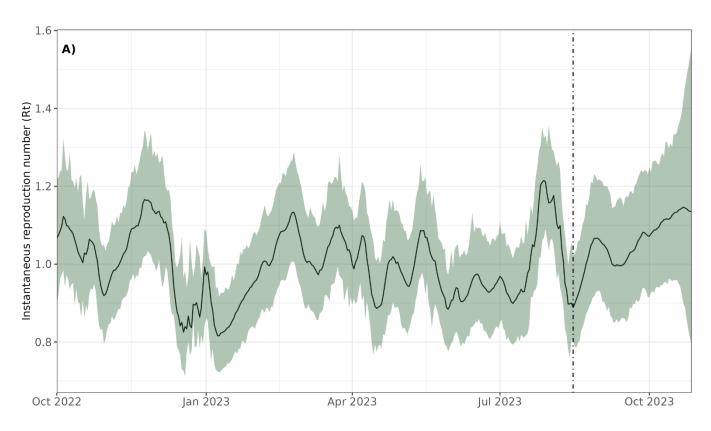
XBC proportions decreased from 27% to 15% over this period. CH.1.1 (including the descendant lineage FK.1.1) was low at the beginning of October, and was not detected in weeks 41 and 42. BA.2.75 was not detected in October.

Following the first detection of BA.2.86 in wastewater in September, this lineage was detected at a number of sites this month (Table 1). However, the national percentages of BA.2.86 were less than 1% in weeks 39, 41 and 42, and so not shown for those weeks in Figures 4 and 5.


Figure 4. National percentage of each variant for week 39 (ending 01 October 2023) to week 42 (week ending 22 October 2023).

Monthly Wastewater Surveillance Report COVID-19

Table 1. Data from 20 wastewater sentinel sites sampled between week 39 (ending 01 October 2023) and week 42 (ending 22 October 2023). Coloured box denotes that the variant was detected at that site that week, cream box denotes that the variant was not detected, and grey box denotes site was not sampled that week.


Figure 5. Estimated variant percentage over time at a national scale (average). Data are collected from up to 20 sentinel sites each week.

Instantaneous Reproduction Number

The model used to estimate the instantaneous reproduction number has been <u>updated</u> with more accurate distributions that describe the lags between infection, symptom onset, and reporting whereas the previous model used fixed values. Rather than using the 7-day average reported case and wastewater data, the model now uses daily data.

Daily wastewater and case data up to 29 October 2023 was used for the modelling. The uncertainty in these measures is denoted with 95% credible intervals (shown in green in Figure 6).

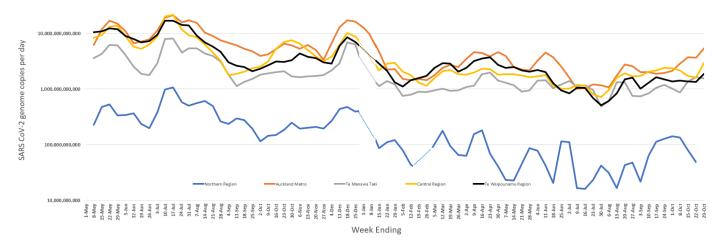

The estimate of the instantaneous reproduction number for 27 October 2023 (in week 43) was 1.13 (95% credible interval 0.79 - 1.56, Figure 6).

Figure 6. Estimates of instantaneous reproduction number. Black vertical line represent when COVID-19 restrictions were lifted on 15 August 2023. Results assume the average total shedding per infection does not vary over time ($\alpha = 3 \times 10^9$). Black solid lines represent central estimates. Shaded regions show 95% credible intervals on the value of the hidden states.

Trends in Ministry of Health Regions

Regional analysis of the wastewater data is shown in Figure 7.

Figure 7. Two week rolling average of total SARS-CoV-2 genome copies detected per day in the five Ministry of Health regions. Dashed lines are inferred levels during periods when samples were either not collected (Christmas period) or insufficient numbers collected (due to weather impacts) for the region.

Acknowledgements

This work represents the combined efforts of many individuals and organisations. We thank the teams across the country who are collecting the wastewater that underpins this work.

The wastewater analysis has been undertaken at ESR by a team including laboratory staff, data scientists, bioinformaticians, and other staff. Ongoing support for this work from the Ministry of Health and ESR management is appreciated.

Notes

Sites and frequency of sample collection: The catchment population sites selected for the surveillance range from approximately 400 to over 1,000,000 individuals. The sites cover all regions of the country. Most major towns and all cities, as well as many smaller communities, are included. In early 2023, the wastewater catchment areas cover over 75% of the population connected to wastewater treatment plants. The sites from which samples have been collected have varied over the last 12 months. New sites may be added over time, and/or sampling may reduce in frequency or cease for other sites. The selection and frequency of sampling vary depending on the local population, access to wastewater collection points, staff availability to collect samples and risk factors. When included, samples are collected at least weekly, with twice weekly sampling being common.

Sampling method: The preferred option is to automatically collect a 24 hour 'composite' sample. This is where a pump automatically collects a small volume of wastewater every 15 minutes over 24 hours using a composite sampler. These samplers are available in some wastewater treatment plants. When composite samplers are not available, 'grab' samples are collected. These range from a sample being taken at a single point in time, to 3 samples taken over 30 minutes, to samples collected over a day. Grab samples represent only the composition of the source at that time of collection and may not be as representative as a 24-hour composite sampler. More variation may be expected with grab samples.

Laboratory analysis of wastewater samples: Samples are sent from each wastewater treatment plant to ESR. Processing of each sample commences within an hour or two of receipt. Processing involves the concentration of virus from 250 mL sample to approx. 1 mL using centrifugation and polyethylene glycol. Viral RNA is then extracted from a small volume of 0.2 mL concentrate to give a final volume of 0.05 mL The presence of SARS-CoV-2 RNA is determined using RT-qPCR. SARS-CoV-2 is considered detected when any of the RT-qPCR replicates are positive.

RT-qPCR: Reverse transcription (RT) to convert RNA to complementary DNA (cDNA), followed by quantitative PCR (qPCR). RT-qPCR is used for detection and quantification of viral RNA.

Method sensitivity: The protocol used to concentrate SARS-CoV-2 from wastewater allows for the sensitive detection of SARS-CoV-2 by RT-qPCR. ESR has shown that when 10 individuals are actively shedding SARS-CoV-2 RNA in a catchment of 100,000 individuals, there was a high likelihood of detecting viral RNA in wastewater (https://doi.org/10.1016/j.watres.2021.118032). Shedding by one individual may be detected in wastewater, but it does depend on many factors including the amount and duration of shedding. Very low levels in wastewater may be not able to be quantified (i.e., less than the limit of quantification- see below).

SARS-CoV-2 RNA detected (positive result): A positive detection in the wastewater indicates that at least one person has been shedding SARS-CoV-2 into the wastewater at some point during the time period that the sample was being collected. In some cases, detections could also be due to the shedding of low levels of SARS-CoV-2 RNA by a recently recovered case. The detection of SARS-CoV-2 RNA does not indicate that infectious virus is present.

Monthly Wastewater Surveillance Report COVID-19

SARS-CoV-2 RNA not detected (negative result): A negative result can occur because there are no active 'shedding' cases in the catchment or because the SARS-CoV-2 RNA concentration is too low to be detected, most likely because there are a very low number of cases in the wastewater catchment. Therefore, negative finding does not necessarily guarantee the absence of COVID-19 in the community.

Viral loads and normalisation: When detected, the SARS-CoV-2 RNA concentration is calculated as genome copies per L of wastewater. This is then converted to a viral load of genome copies/day/person. This conversion considers the flow rate of wastewater entering the treatment plant (the influent) and the population in the catchment. The flow rate is the total volume (m3 per day) recorded at the inlet of the wastewater treatment plant over 24 hours. This is a population-normalised viral load. Currently, the flow rate is the average annual flow rate, but will be replaced with daily flow rate when available (note that rainfall may significantly increase the flow rate at the inlet, diluting the sample, and may result in lower concentrations and a false negative result).

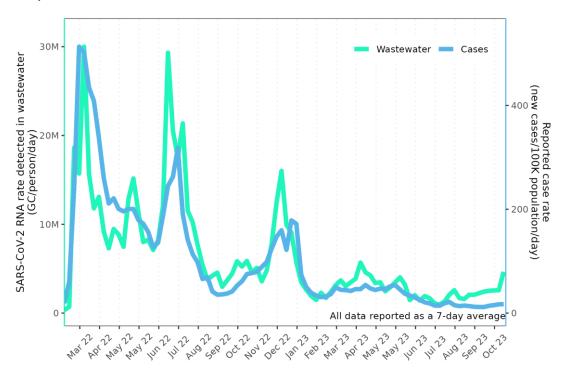
Limit of quantification: The lowest concentration of the target that can be reliably quantified is referred to as the limit of quantification. For those samples where SARS-CoV-2 is detected but cannot be quantified, a value of 5 genome copies/mL wastewater is used. While a standard method is being used, virus recovery can vary from sample to sample, and this may affect the quantitation.

Wastewater Data Modelling: Instantaneous reproduction number (R_t): The instantaneous reproduction number (R_t) represents the average number of secondary cases that will arise per primary infectious case. The effective reproduction (R_{eff}) number can be measured as either the instantaneous reproduction number (R_t), which measures transmission at a specific point in time; or the case reproductive number, which measures transmission for a specific cohort of individuals. The models described measure the instantaneous reproduction number (R_t). In general terms, an R_t above 1 would typically indicate an increasing number of infections in the population. The instantaneous reproduction number is calculated using a semi-mechanistic model that is fitted to (i) case numbers and (ii) wastewater quantitation, and incorporates information about shedding rates, infection generation times, and case ascertainment. Instantaneous reproduction number is estimated take into account any delays in self-reporting of cases. It should be noted that there is uncertainty in this measure, which is denoted with the 95% credible intervals.

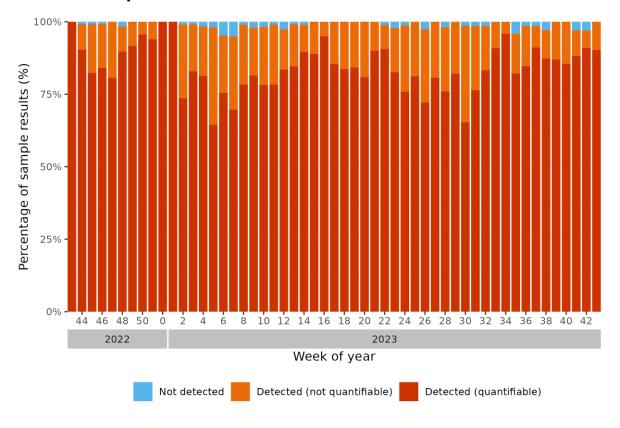
Data subject to change: Data generated for the New Zealand Wastewater COVID-19 Surveillance Programme should be considered provisional and may be subject to change.

Data not shown: Results from certain samples may not be shown, as the result was either deemed invalid, or the sample could not be tested (e.g., leaked in transit, not labelled).

For further information please contact:

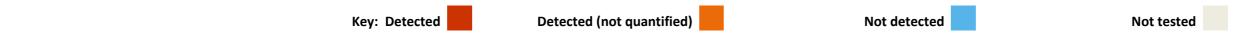

Joanne Hewitt Jo Chapman Science Leader Senior Scientist

<u>Joanne.hewitt@esr.cri.nz</u> <u>Joanne.chapman@esr.cri.nz</u>



Appendix A. National Results

Time series plotted on linear scale


Detections for the past 52 weeks

Appendix B. Site Results Weekly Summary

Table 2: Weekly Summary of Wastewater Sampling Results for SARS-CoV-2

		202	2023
region	Site p	opulation sample_type 52	
	Maketu	1,300 Autosampler	
	Mt	65,000 Autosampler	
	Opotiki	3,800 Autosampler	
	Rotorua	59,000 Autosampler	
	Tauranga	50,000 Autosampler	
	Te Puke	9,700 Autosampler	
	Waihi Beach	3,600 Autosampler	
	Whakatāne	21,020 Autosampler	<u> </u>
Gisborne	Gisborne	37,000 Autosampler	
	Hastings	80,000 Autosampler	<u> </u>
Hawke's Bay	Napier	55,000 Autosampler	<u> </u>
	Waipukurau	4,610 Autosampler	
	Eltham	2,007 Autosampler	
Taranaki	Hawera	12,000 Autosampler	
	New Plymouth	88,000 Autosampler	<u> </u>
	Dannevirke	5,697 Grab	
	Levin	21,200 Autosampler	
Manawatu-	Palmerston North	90,000 Autosampler	
Whanganui	Taumarunui	4,000 Grab	
	Whanganui	44,500 Autosampler	<u> </u>
	Woodville	1,657 Grab	
	Carterton	5,800 Grab	
	Featherston	2,500 Grab	
	Greytown	2,438 Grab	<u> </u>
	Hutt Valley	133,000 Autosampler	<u> </u>
	Martinborough	1,641 Grab	
Wellington	Masterton	20,700 Auto/grab	
	Otaki	3,500 Autosampler	
	Paraparaumu	49,000 Autosampler	
	Porirua	85,000 Autosampler	
	Wellington (Moa Point)	168,000 Autosampler	
	Wellington (Western)	14,000 Autosampler	
Tasman	Motueka	8,300 Autosampler	
Nelson	Nelson Central/North	26,000 Autosampler	
	Richmond/Nelson South	60,000 Autosampler	

Monthly Wastewater Surveillance Report COVID-19

2022 2023				
region	Site p	opulation sample_type 52		
Marlborough	Blenheim	31,000 Autosampler		
	Picton	5,000 Autosampler		
West Coast	Greymouth	10,000 Grab		
	Reefton	1,000 Grab		
	Westport	5,000 Grab		
	Ashburton	18,000 Autosampler		
Canterbury	Christchurch	368,000 Autosampler		
	Kaiapoi	12,500 Grab		
	Leeston	3,900 Autosampler		
	Rangiora	19,000 Grab		
	Rolleston & Eastern	35,000 Autosampler		
	Timaru	28,000 Autosampler		
	Woodend	7,600 Grab		
	Alexandra	6,200 Autosampler		
	Balclutha	4,100 Grab		
Otago	Cromwell	7,100 Autosampler		
	Dunedin (Green Island)	22,900 Autosampler		
	Dunedin (Mosgiel)	14,600 Autosampler		
	Dunedin (Tahuna)	84,000 Autosampler	:	
	Oamaru	12,000 Autosampler		
	Queenstown	40,000 Autosampler	<u>, </u>	
	Wanaka	14,500 Grab		
Southland	Bluff	2,000 Autosampler		
	Gore	8,000 Autosampler		
	Invercargill	50,000 Autosampler		

