# RECOMMENDATION FOR SEASONAL INFLUENZA VACCINE COMPOSITION FOR NEW ZEALAND FOR 2013

Emappy.

Dr Virginia Hope Programme Leader, ESR-NCBID Programme

Mo

Dr Q Sue Huang Project Leader

Buch

Dr Don Bandaranayake Peer Reviewer Public Health Physician, ESR-NCBID

# RECOMMENDATION FOR SEASONAL INFLUENZA VACCINE COMPOSITION FOR NEW ZEALAND FOR 2013

A report prepared for the Ministry of Health as part of the 2012/13 contract (Service Description: NCBID Virology)

by

Dr Q Sue Huang Senior Science Leader - Virology Liza Lopez Senior Analyst Tim Wood Senior Analyst

October 2012

Client Report FW12048

## Disclaimer

This report or document ("the Report") is given by the Institute of Environmental Science and Research Limited ("ESR") solely for the benefit of the Ministry of Health, Hospital and Health Services and other Third Party Beneficiaries as defined in the Contract between ESR and the Ministry of Health, and is strictly subject to the conditions laid out in that Contract.

Neither ESR nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the Report or its contents by any other person or organisation.

## Acknowledgements

We would like to thank the general practitioners and their staff, the local surveillance coordinators, regional virology laboratories (Auckland, Waikato, Wellington, and Christchurch), and medical officers of health involved in influenza surveillance for their time and cooperation. We would also like to acknowledge the WHO National Influenza Centre at ESR for the provision of laboratory data and ESR's Information Management Group for assisting in the running of the electronic flu database. Special thanks also go to:

- Dr Don Bandaranayake for peer reviewing this report.
- The Ministry of Health for providing the funding for Sentinel GP surveillance, HealthStat, Healthline and ICD code based hospital surveillance.
- The WHO Collaborating Centre in Melbourne for providing further characterisations of the influenza isolates.
- The National Institute of Communicable Diseases, Johannesburg in South Africa and Department of Health and Ageing (DOHA) in Australia for sharing information on their influenza activity.
- The Therapeutic Goods Administration, DOHA for hosting the Australian Influenza Vaccine Committee.
- The SARI surveillance is funded by US Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) (1U01IP000480-01). It is a key component of the Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS) project. The project is a five year research cooperative agreement between ESR and US CDC's National Center for Immunization and Respiratory Diseases (NCIRD) Influenza Division. The SHIVERS project is a multicentre and multi-disciplinary collaboration between ESR, Auckland District Health Board, Counties Manukau District Health Board, University of Otago, University of Auckland, the US Centres for Disease Control and Prevention and WHO Collaborating Centre at St Jude Children's Hospital in Memphis, USA.
- The SARI surveillance protocol development, data analysis and interpretation are carried out by: Sue Huang, Sally Roberts, Colin McArthur, Michael Baker, Cameron Grant, Deborah Williamson, Adrian Trenholme, Conroy Wong, Susan Taylor, Tim Wood, Ange Bissielo, Graham Mackereth, Don Bandaranayake, Richard Hall, Nikki Turner, Nevil Pierse, David Murdoch, Paul Thomas, Richard Webby, Diane Gross, Jazmin Duque, and Marc-Alain Widdowson on behalf of the SHIVERS investigation team.
- Participants in the National Influenza Surveillance Programme and Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS) project.
- Research nurses and clinicians in the SHIVERS project.

## Recommendations

The Australian Influenza Vaccine Committee (AIVC) met with New Zealand representatives (Appendix 1) in Melbourne on 3 October 2012 to consult on the influenza vaccine composition for 2013 for New Zealand, Australia and South Africa. The recommended composition was:

- A(H1N1) an A/California/7/2009 (H1N1)pdm09 like virus
- A(H3N2) an A/Victoria/361/2011 (H3N2) like virus
- B a B/Wisconsin/1/2010 like virus

# Contents

| Discl | laimer                          |                                                                                                                                                                                                            | i                          |  |  |  |
|-------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Ackr  | nowledg                         | ements                                                                                                                                                                                                     | ii                         |  |  |  |
| Reco  | ommend                          | ations                                                                                                                                                                                                     | iii                        |  |  |  |
| Cont  | tents                           |                                                                                                                                                                                                            | iv                         |  |  |  |
| REC   | COMME                           | NDATION FOR SEASONAL INFLUENZA VACCINE COMPOSITION                                                                                                                                                         |                            |  |  |  |
|       | FOR 2                           | 013                                                                                                                                                                                                        | 1                          |  |  |  |
| 1.    | INFLU                           | ENZA EPIDEMIOLOGY                                                                                                                                                                                          | 3                          |  |  |  |
|       | 1.1<br>1.2<br>1.3               | World-wide influenza activity, February to September 2012<br>Influenza activity in Australia, March to September 2012<br>Influenza activity in South Africa, March to September 2012                       | 3<br>4<br>6                |  |  |  |
| 2.    | INFLU                           | ENZA ACTIVITY IN NEW ZEALAND IN 2012                                                                                                                                                                       | 8                          |  |  |  |
|       | 2.1<br>2.2                      | Community-based surveillance                                                                                                                                                                               | 8<br>8<br>14<br>16         |  |  |  |
|       | 2.3                             | <ul> <li>2.2.2 ICD code based hospitalisation surveillance</li> <li>2.2.3 Non-sentinel laboratory surveillance</li> <li>Event-based surveillance (telephone health advice service – Healthline)</li> </ul> | 16<br>22<br>24<br>25       |  |  |  |
| 3.    | NEW Z                           | ZEALAND STRAIN CHARACTERISATIONS                                                                                                                                                                           | 26                         |  |  |  |
|       | 3.1<br>3.3<br>3.4<br>3.5<br>3.6 | Circulating strains in 2012<br>Influenza A(H1N1)pdm09<br>Seasonal influenza A(H3N2)<br>Influenza B<br>Oseltamivir resistance                                                                               | 26<br>29<br>29<br>30<br>36 |  |  |  |
| 4.    | RECEI<br>VIRUS                  | NT STRAIN CHARACTERISATION FOR SOUTHERN HEMISPHERE<br>SES AND LIKELY VACCINE CANDIDATES                                                                                                                    | 38                         |  |  |  |
| _     | 4.1<br>4.2<br>4.3               | Influenza A(H1N1)pdm09<br>Seasonal influenza A(H3N2)<br>Influenza B                                                                                                                                        | 38<br>38<br>39             |  |  |  |
| 5.    | SUMM                            | IARY OF VACCINE COMPOSITION RECOMMENDATION                                                                                                                                                                 | 41                         |  |  |  |
|       | 5.1                             | Explanation of "like" strains suitable for inclusion in vaccine                                                                                                                                            | 41                         |  |  |  |
| APP   | ENDIX                           | 1 - Composition of the Australian Influenza Vaccine Committee 2012                                                                                                                                         | 42                         |  |  |  |
| APP   | ENDIX                           | 2 - Isolates Received For Analysis at the Australian WHO Collaborating                                                                                                                                     |                            |  |  |  |
|       | Centre                          | онинания<br>Э. Т. Ф. — А /ЛТАМАХ. Т. АФ                                                                                                                                                                    | 44                         |  |  |  |
| APP   | ENDIX                           | 5 – Influenza A(HINI)pdm09                                                                                                                                                                                 | 46                         |  |  |  |
| APP.  | APPENDIX 4 - Influenza A (H3N2) |                                                                                                                                                                                                            |                            |  |  |  |
| APP   | ENDIX                           | 5 - Influenza B                                                                                                                                                                                            | 59                         |  |  |  |
| APP   | ENDIX                           | 6 - WHO Recommendation for Influenza Vaccines                                                                                                                                                              | 69                         |  |  |  |

## RECOMMENDATION FOR SEASONAL INFLUENZA VACCINE COMPOSITION FOR 2013

It is known that influenza viruses frequently go through antigenic changes in their surface proteins, haemagglutinin (HA) and neuraminidase (NA). Protection by vaccines against influenza infection depends on achieving a good match between the vaccine strains and the circulating viruses, particularly for the HA antigen. A combination of antigenic and genetic analyses is used to identify emergent antigenic variants of potential future epidemic importance and for consideration of their inclusion in vaccines. Antigenic relationships among contemporary viruses and vaccine strains are of prime importance in determining vaccine composition. These relationships are evaluated mainly in haemagglutination-inhibition (HI) tests using post-infection ferret sera against egg and/or cell grown reference and vaccine viruses using red blood cells principally from turkeys but also from other species, as appropriate. Virus neutralisation tests provide complementary data. Antigenic cartography is used as an additional analytical tool to visualise and integrate antigenic data. Phylogenetic analyses of HA and NA genes help to define the genetic relatedness of antigenic variants to their predecessors and to elucidate the molecular basis for antigenic drift. The spread of antigenic variants associated with influenza outbreaks in different countries is also an important criterion for selection of epidemiologically relevant vaccine candidates.

The World Health Organization (WHO) makes twice-yearly recommendations to guide national/regional authorities on the formulation of influenza vaccines. One recommendation is made in February for the northern hemisphere winter and another recommendation is made in September for the southern hemisphere winter. The recommendation for the southern hemisphere is published in the 12 October issue of the *Weekly Epidemiological Record*, 2012 87(41):389-400 (Appendix 6).

It should be noted that the WHO recommendations are made with respect to reference strains which may or may not be suitable for vaccine production. Thus, even where the WHO recommendation is adopted, it is necessary for country/regional authorities to approve the specific vaccine strains to be used and this, in turn, requires the preparation of specific reagents for vaccine standardisation.

Since 1969, the Australian Influenza Vaccine Committee (AIVC), with representatives from New Zealand, Australia and South Africa, has met annually in October to approve or update the WHO recommended formulation for influenza vaccines intended for the following winter (March to September of the following year) for these countries. New Zealand uses the influenza vaccine strains recommended by AIVC in the subsequent year.

The AIVC met with New Zealand representatives (Appendix 1) on 3 October 2012 to consult on the seasonal influenza vaccine composition for New Zealand, Australia and South Africa for 2013. The recommended composition (Table 1) was:

- A(H1N1) an A/California/7/2009 (H1N1)pdm09 like virus
- A(H3N2) an A/Victoria/361/2011 (H3N2) like virus
- B a B/Wisconsin/1/2010 like virus

| Economical I |         | Xa a sin a |                      |                          |                                       |
|--------------|---------|------------|----------------------|--------------------------|---------------------------------------|
| Formulation  |         | Vaccine    | A HONZ               | A H3N2 A H1N1            |                                       |
|              |         |            |                      |                          |                                       |
| NZ & WHO*    | 2012    | 2013       | A/V1ctor1a/361/2011  | A/California///2009      | B/W1scons1n/1/2010                    |
| NZ & WHO*    | 2011    | 2012       | A/Perth/16/2009      | A/California/7/2009      | B/Brisbane/60/2008                    |
| NZ & WHO*    | 2010    | 2011       | A/Perth/16/2009      | A/California/7/2009      | B/Brisbane/60/2008                    |
| NZ & WHO*    | 2009    | 2010       | A/Perth/16/2009      | A/California/7/2009      | B/Brisbane/60/2008                    |
| NZ & WHO*    | 2008    | 2009       | A/Brisbane/10/2007   | A/Brisbane/59/2007       | B/Florida/4/2006                      |
| NZ & WHO*    | 2007    | 2008       | A/Brisbane/10/2007   | A/Solomon Islands/3/2006 | B/Florida/4/2006                      |
| NZ & WHO*    | 2006    | 2007       | A/Wisconsin/67/2005  | A/New Caledonia/20/99    | B/Malaysia/2506/2004                  |
| NZ & WHO*    | 2005    | 2006       | A/California/7/2004  | A/New Caledonia/20/99    | B/Malaysia/2506/2004                  |
| NZ & WHO*    | 2004    | 2005       | A/Wellington/1/2004  | A/New Caledonia/20/99    | B/Shanghai/361/2002                   |
| NZ & WHO*    | 2003    | 2004       | A/Fujian/411/2002    | A/New Caledonia/20/99    | B/Hong Kong/330/2001                  |
| NZ & WHO*    | 2002    | 2003       | A/Moscow/10/99       | A/New Caledonia/20/99    | B/Hong Kong/330/2001                  |
| NZ & WHO*    | 2001    | 2002       | A/Moscow/10/99       | A/New Caledonia/20/99    | B/Sichuan/379/99                      |
| NZ           | 2000    | 2001       | A/Sydney/5/97        | A/New Caledonia/20/99    | B/Beijing/184/93                      |
| WHO*         | 2000    | 2001       | A/Moscow/10/99       | A/New Caledonia/20/99    | B/Beijing/184/93                      |
| NZ & WHO*    | 1999    | 2000       | A/Sydney/5/97        | A/Beijing/262/95         | B/Beijing/184/93                      |
| NZ           | 1998    | 1999       | A/Sydney/5/97        | A/Bayern/7/95            | B/Beijing/184/93                      |
| WHO**        | 1997-98 |            | A/Wuhan/359/95       | A/Bayern/7/95            | B/Beijing/184/93                      |
| NZ           | 1997    | 1998       | A/Wuhan/359/95       | A/Texas/36/91            | B/Beijing/184/93                      |
| WHO**        | 1996-97 |            | A/Wuhan/359/95       | A/Singapore/6/86***      | B/Beijing/184/93                      |
| NZ           | 1996    | 1997       | A/Johannesburg/33/94 | A/Texas/36/91            | B/Beijing/184/93                      |
| WHO**        | 1995-96 |            | A/Johannesburg/33/94 | A/Singapore/6/86         | B/Beijing/184/93                      |
| NZ           | 1995    | 1996       | A/Guangdong/25/93    | A/Texas/36/91            | B/Panama/45/90                        |
| WHO**        | 1994-95 |            | A/Shangdong/9/93     | A/Singapore/6/86         | B/Beijing/184/93                      |
| NZ           | 1994    | 1995       | A/Beijing/32/92      | A/Texas/36/91            | B/Panama/45/90                        |
| WHO**        | 1993-94 |            | A/Beijing/32/92      | A/Singapore/6/86         | B/Panama/45/90                        |
| NZ           | 1993    | 1994       | A/Shanghai/24/90     | A/Texas/36/91            | B/Panama/45/90                        |
| WHO**        | 1992-93 |            | A/Beijing/353/89     | A/Singapore/6/86         | B/Yamagata/16/88<br>or B/Panama/45/90 |
| NZ           | 1992    | 1993       | A/Beijing/353/89     | A/Victoria/36/88         | B/Yamagata/16/88<br>or B/Panama/45/90 |
| WHO**        | 1991-92 |            | A/Beijing/353/89     | A/Singapore/6/86         | B/Yamagata/16/88<br>or B/Panama/45/90 |
| NZ           | 1991    | 1992       | A/Beijing/353/89     | A/Victoria/36/88         | B/Yamagata/16/88                      |
| WHO**        | 1990-91 |            | A/Guizhou/54/89      | A/Singapore/6/86         | B/Yamagata/16/88                      |

 TABLE 1.
 Influenza Vaccine Recommendations for New Zealand, 1991-2013

\* WHO recommendations are for the Southern Hemisphere winter;

\* \* WHO recommendations are for the Northern Hemisphere winter

\*\*\* USA selected the variant A/Texas/36/91

## 1. INFLUENZA EPIDEMIOLOGY

#### 1.1 World-wide influenza activity, February to September 2012

Between February and September 2012, influenza was active worldwide and reported in Africa, the Americas, Asia, Europe and Oceania. Activity in individual countries was low or moderate to high and was due to circulation of influenza A(H1N1)pdm09, A(H3N2) and B viruses. (Appendix 6)

In the northern hemisphere, influenza activity increased in February and March, started to decline in April, and remained low since May. For the southern hemisphere in general, activity increased from May and had declined by September. In tropical areas, activity was variable throughout the period. (Appendix 6)

#### Influenza type A(H1N1)pdm09

Generally, influenza type A(H1N1)pdm09 activity was low, notably so in Africa, Europe and Oceania. In other regions it was reported as the predominant or co-dominant subtype (with A(H3N2) viruses) in some countries. For Asia, India reported regional outbreaks in March and April, while China Hong Kong Special Administrative Region reported regional outbreaks in May and June. In the Americas, northern hemisphere countries, areas and territories reporting widespread and/or regional outbreaks in the timeframe February to April were Colombia, French Guiana, Guatemala and the United States of America, while southern hemisphere countries Argentina, the Plurinational State of Bolivia, Brazil, El Salvador and Paraguay reported such outbreaks from June to August.

#### Influenza A(H3N2)

Influenza A(H3N2) activity was reported in most countries during this period. In the northern hemisphere widespread and/or regional outbreaks were reported in Europe, the Russian Federation, parts of Asia, northern Africa, Canada and the United States of America in February-April, extending into May in Japan and the United States of America. Regional outbreaks in May and June were reported by China, Hong Kong Special Administrative Region and widespread or regional outbreaks were reported by the Dominican Republic from May to July. In many parts of the southern hemisphere, A(H3N2) viruses caused widespread and regional outbreaks between May and August, notably in Chile (June-August) and Brazil (July). In Australia and New Zealand widespread outbreaks were reported in July to August and August respectively. South Africa reported regional outbreaks in August.

#### Influenza B

Widespread and regional influenza B activity was reported in many countries, areas and territories in the northern hemisphere over the period February to July including the American continent (Canada, Cuba, El Salvador, Panama and the United States of America), Asia (China, Israel, Japan and the Republic of Korea), and Europe (Austria, Belgium, Croatia, Estonia, Hungary and the Russian Federation). For the southern hemisphere, widespread and regional influenza B activity was reported in the Plurinational State of Bolivia, Ecuador, Paraguay and Peru between June and August. Within Oceania, Australia reported regional outbreaks in August. In South Africa, influenza B activity increased from July to become regional in August.

# Zoonotic influenza infections caused A(H5N1), A(H3N2) variant (v), A(H1N1)v, A(H1N2)v and A(H7N3) viruses

From 23 February to 18 September 2012, 17 confirmed human cases of A(H5N1), 10 of which were fatal, were reported by Bangladesh, Cambodia, China Hong Kong Special Administrative Region, Egypt, Indonesia, and Viet Nam where highly pathogenic avian influenza A(H5N1) is present in poultry and/or wild birds. Since December 2003, a total of 608 cases with 359 deaths have been

confirmed in 15 countries. To date there has been no evidence of sustained human-to-human transmission.

Human cases of influenza A(v) viruses have been detected since February 2012 in the United States of America where a total of 305 infections caused by A(H3N2)v viruses have been reported. One of these infections was fatal. A single case of A(H1N1)v and three cases of A(H1N2)v have also been detected.

Two human cases of conjunctivitis due to A(H7N3) have been reported by Mexico. These cases had exposure to A(H7N3) infected poultry.<sup>1</sup>

No human cases of influenza A(H9N2) were detected during the period 23 February to 18 September 2012.

(Abridged from the Weekly Epidemiological Record, 2012 87(41): 457-468)

The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne, Australia (Melbourne WHOCC) analysed influenza isolates received from 1 March to 12 September 2011. Influenza A(H3N2) virus was the predominant strain which accounted for 68.5% (1076/1572) of isolates, while 30.3% (476/1572) were influenza B and 1.3% (20/1527) were A(H1N1)pdm09 (Table 2.1 in Appendix 2).

#### **1.2** Influenza activity in Australia, March to September 2012

Influenza activity in Australia in 2012 was medium with some regional variations regarding influenza activities and types/subtypes. There are 10 forms of influenza surveillance system in Australia, which can be divided into three categories.

#### • Influenza-like-illness surveillance

- Australian Sentinel Practice Research Network (ASPREN). This system has general practitioners (GPs) who report influenza-like illness (ILI) presentation rates in New South Wales, South Australia, Victoria, Queensland, Tasmania, Western Australia and the Northern Territory. As jurisdictions joined ASPREN at different times and the number of GPs reporting has changed over time, the representativeness of ASPREN data in 2012 may be different from that of previous years. The national case definition for ILI is presentation with fever, cough and fatigue. Overall, there was an earlier increase and higher peak in ILI consultation rates compared with the seasonal peaks reported in 2010 and 2011.
- **Emergency department surveillance.** Emergency departments across New South Wales and Western Australia participated in influenza surveillance. Both Western Australia and New South Wales emergency department surveillance indicated that influenza activity in 2012 was higher than in 2010 and 2011.
- **FluTracking.** FluTracking is an online health surveillance system to detect influenza epidemics. It involves participants from around Australia completing a simple online weekly survey, which collects data on the rate of ILI symptoms in communities. Overall, FluTracking activity in 2012 was higher than in 2010 and 2011, but lower than that of 2008-2009.

<sup>&</sup>lt;sup>1</sup> <u>http://www.cdc.gov/mmwr/pdf/wk/mm6136.pdf</u>

#### • Laboratory surveillance:

- National Notifiable Disease Surveillance System (NNDSS). In Australia, laboratory-confirmed cases of influenza became nationally notifiable from 1 January 2001. All laboratory-confirmed cases are required to be reported to state and territory health departments. From January to 31 August 2012, there have been 36,321 laboratory-confirmed notifications of influenza diagnosed and reported to NNDSS. Of these, 29,744 (82%) cases were reported as influenza A (63% influenza A (unsubtyped), 18% A(H3N2) and 1% A(H1N1)pdm09) and 6,489 (18%) were influenza B. A further 41 (<1%) were type A&B and 3 (<1%) were type C. In addition, the age distribution of influenza notifications has shown a bimodal trend with peaks in those aged 0-4 years and in those aged 70 years and over, with a small peak among those aged 30-44 years. Overall, the 2012 notification data are higher than that of 2011 and 2010.</p>
- WHOCC Laboratory Surveillance. This is conducted by the Melbourne WHOCC. A total of 1297 influenza viruses from Australia were received for analysis at the Melbourne WHOCC (Appendix 2) from 1 March to 12 September 2012. Eight hundred and seventy-five A(H3N2) viruses (67.5%, 875/1297) were isolated with the majority relating antigenically to the A/Perth/16/2009-lik and A/Victoria/361/2011-like strains. Sixteen (1.2%, 16/1297) of the isolates were influenza A(H1N1)pdm09 viruses and antigenically closely related to A/California/7/2009 (H1N1)-like strain. Four hundred and six (31.3%, 406/1297) influenza B viruses were isolated with most of them belonging to the B/Victoria lineage. Regarding oseltamivir-resistant viruses, between 1 January to 3 September 2012, one influenza A(H1N1)pdm09 virus (out of 810 tested) have shown resistance to NA inhibitor oseltamivir by enzyme inhibition assay. This virus also had the H275Y mutation known to confer resistance to oseltamivir.
- Sentinel Laboratory Surveillance. Laboratory testing data are provided weekly directly from the three National Influenza Centres (PathWest (WA), VIDRL (VIC) and ICPMR (NSW) and also from Tasmanian laboratories. Additionally, approximately 30% of all ILI patients presenting to ASPREN-based sentinel GPs are swabbed for laboratory testing, and the results of ASPREN ILI laboratory respiratory viral tests now include Western Australia. From the fortnight ending 18 August to 31 August 2012, a total of 25.1% of the specimens have been positive for influenza.

#### • Severity Surveillance:

- **Influenza hospitalisations.** The Influenza Complications Network (FluCAN) collects detailed clinical information on all hospitalised cases of influenza and pneumonia from a sample of four sentinel hospitals across Australia. Overall, the majority of admissions have been with influenza A, with 15% of cases due to influenza B. Around 45% of the cases are aged 65 years and over (median age 61 years) and 75% of all cases have known medical co-morbidities.
- Queensland public hospital admissions (EpiLog). EpiLog is a web based application developed by Queensland Health. This surveillance system generates admission records for confirmed influenza cases through interfaces with the inpatient information and public laboratory databases. Records are also able to be generated manually. Admissions data reported are based on date of reported onset. Up to 2 September 2012, there have been 1472 admissions of confirmed influenza this year, including 137 to intensive care units. The age distribution of confirmed influenza admissions in 2012 shows a bimodal distribution peaking in the 0-9 and also the 70 years and over age groups.

- Australian Paediatric Surveillance. This surveillance system reports on hospital admissions of children aged 15 years and under to intensive care units (ICUs) around Australia following complications due to influenza infection, and was initiated at the start of June 2009 through the Australian Paediatric Surveillance Unit (APSU). Details of admissions are reported weekly. From 1 July to 31 August 2012, there have been 28 hospitalisations associated with severe influenza complications in children, including 8 ICU admissions. The majority of these hospitalisations were associated with influenza A infections. More than one third of the cases had an underlying chronic condition reported.
- **Death associated with influenza and pneumonia.** Nationally reported influenza deaths are notified by jurisdictions to the NNDSS. As of 31 August 2012, 43 influenza-related deaths have been notified to this system with a median age of 80 years. Almost all cases were reported as having influenza A(unsubtyped) or A(H3N2), with the A(unsubtyped) infections also likely to be attributable to A(H3N2). The number of influenza associated deaths reported the NNDSS are reliant on the follow up of cases to determine the outcome of their infection and most likely do not represent the true mortality impact associated with this disease.
- **Death certificate survey.** The registered death certificates from the births, deaths and marriages office in New South Wales were collected for influenza and pneumonia deaths. Death registration data show that until the week ending 10 August 2012, there were 1.67 pneumonia- or influenza-associated deaths per 100,000 population in NSW, which is below the seasonal threshold of 1.73 per 100,000 NSW population for this period.

(Abridged from the Australian Influenza Surveillance Report 2012, No.7, Department of Health and Ageing, Australia and a report by Dr. Ian Barr, WHO Collaborating Centre for Influenza, Melbourne.)

#### 1.3 Influenza activity in South Africa, March to September 2012

Influenza surveillance in South Africa has been expanded significantly during 2012 and includes three main active surveillance programmes and one passive surveillance system.

- **Viral watch programme** A total of 246 doctors and primary health care nurses have been recruited across the country to participate in the ILI sentinel surveillance programme from all nine provinces. This programme focuses on mild infections seen mainly by GPs as well as a few paediatricians and primary health care clinics across the country.
- Enhanced viral watch programme This programme was established following the emergence of the influenza A(H1N1)pdm09 with the aim of expanding the "viral watch" to include hospitalised patients. This programme includes 11 hospitals covering all nine provinces and focuses on hospitalised patients with severe acute respiratory-tract infection (SARI) across the country.
- **SARI surveillance programme** The SARI surveillance programme was established in 2009 and monitors cases of more severe disease in hospitalised patients. Detailed epidemiologic data are collected on all patients. This programme currently includes 5 hospitals as 4 sentinel sites covering 4 provinces: Chris Hani Baragwanath Hospital (CHBH), an urban setting hospital situated in Gauteng Province with a well-defined population (Soweto); Edendale

Hospital (EH) a semi-urban setting hospital situated in KwaZulu-Natal Province, Klerksdorp and Tshepong Hospitals (KH) situated in a semi-urban setting in the Northwest Province and Mapulaneng and Matikwana Hospitals (MMHs), rural setting hospitals in Mpumalanga Province. In addition the respiratory consultations and hospitalisations surveillance system collects anonymous influenza- and pneumonia-associated outpatient consultations and hospitalisations data from one private hospital group in 7 provinces (Gauteng, North West, Free State, Mpumalanga, Eastern and Western Cape and KwaZulu-Natal). These data on the number of consultations and hospitalisations are compared to the influenza season as described by the viral watch and SARI programmes.

• **Passive surveillance system**: Apart from these active surveillance sites, the National Institute for Communicable Diseases (NICD) also offers support to National Health Laboratory Service laboratories that routinely test for respiratory virus disease across the country.

In 2012, a total of 6516 suspected influenza specimens were processed up to week 36. Of which, 1037 influenza viruses were detected. This gave an overall detection rate of 15.9% compared with 23% in 2011. Among all detected influenza viruses, influenza A was detected in 612 (59%, 612/1037) and influenza B in 425 (41%, 425/1037). Among all influenza A viruses, influenza A(H3N2) was the predominant strain (98.5%, 603/612) compared with the A(H1N1)pdm09 strain (0.8%, 5/612). Among all influenza B viruses (425), B/Victoria lineage viruses (32%, 136/425) outnumbered B/Yamagata lineage viruses (14.4%, 61/425).

A total of 60 seasonal influenza A(H3N2) viruses were sequenced and they were clustered genetically with the A/Victoria/208/2009 clade. A total of 26 A(H3N2) virus isolates could be characterised antigenically by hemagglutination inhibition assay (HIA) and almost all showed normal reactivity to the A/Perth/16/2009 reference antiserum. The NA genes of the 142 seasonal influenza A(H3N2) viruses were sequenced and no resistance causing mutations were identified.

In the 2012 season only five influenza A viruses were subtyped as A(H1N1)pdm09 and no virus isolates were recovered in cell cultures. The HA gene could be sequenced from one and further sequencing of the rest of the viruses is in progress. The M gene was sequenced from 3 clinical samples and all 3 viruses are resistant to amantadine as it carries the S31N mutation.

Thirty three influenza B viruses were characterized for reactivity to reference antisera raised against vaccine or other reference antigens using the hemagglutination inhibition assay. Twenty six isolates reacted to the B/Brisbane/60/2008-like reference antisera and showed low antigenic reactivity to reference antisera. For the seven B/Yamagata-like isolates, all except one of the B/Yamagata-like virus isolates showed low reactivity with antisera raised against the B/Wisconsin/1/2010 strain. Phylogenetic analysis was done for the 45 B/Victoria/lineage-like viruses and showed that the majority of the viruses are B/Brisbane/60/2008-like (or genetic clade 1). Phylogenetic analysis was done for 21 B/Yamagata lineage viruses. Fourteen of the 21 B/Yamagata lineage-like viruses fall in clade 3 and 7 fall in clade 2.

No neuraminidase inhibitor resistant influenza viruses have been detected for 20 tested viruses by using phenotypic assay.

(Abridged from a report by Dr. Florette Treurnicht, National Institute for Communicable Diseases, South Africa.)

## 2. INFLUENZA ACTIVITY IN NEW ZEALAND IN 2012

The national influenza surveillance system in New Zealand is an essential public health tool for assessing and implementing strategies to control influenza. The surveillance system includes community-based surveillance (ESR's sentinel general practitioners (GP) surveillance, HealthStat GP surveillance), hospital-based surveillance (SHIVERS, ICD-based hospitalisation and non-sentinel laboratory surveillance), and event-based surveillance (telephone health advice service – Healthline).

Influenza activity during the 2012 New Zealand winter was at a medium level compared to that of the past 21 years of surveillance. When the 2012 sentinel ILI consultation data were compared to the 1992-2012 data, the 2012 peak consultation rate of 154.1 per 100 000 was the 11<sup>th</sup> highest.

The 2012 influenza activity remained below the baseline in May and June. The ILI rate first crossed the baseline level in week 26 (25 June -1 July 2012) and reached the peak in week 31 (30 July -5 August 2012). As in previous years, the influenza activity in 2012 had uneven geographical distribution.

ILI disease burden was higher in children (0-5 years) compared to other age groups. SARI disease burden was higher in both young children (0-5 years) and elderly (65+) compared to other age groups. SARI disease burden was also higher in Pacific peoples and Maori ethnic groups than Europeans and Asians.

Influenza A(H3N2) was the predominant strain among all influenza viruses in most of the regions in the 2012 New Zealand winter. It represented 67.8% (1356/2000) of all viruses including 243 of A/Perth/16/2009 viruses. The influenza strain predominance had regional and temporal variation. For example, in the Auckland region during May-July, influenza A(H1N1)pdm09 predominated. However, this was replaced by influenza A(H3N2) predominance in August. Most of A(H3N2) viruses reacted well with sheep/rabbit antisera raised against A/Perth/16/2009 vaccine strain. The sequenced viruses showed that they fell into the genetic group 3 within the A/Victoria/316/2011 genetic clade.

Influenza A(H1N1)pdm09 and influenza B viruses co-circulated with A(H3N2) viruses. Influenza A(H1N1)pdm09 viruses represented 11.9% (237/2000) of all viruses, including 70 of A/California/7/2009 viruses. Influenza B viruses represented 8.9% (178/2000) of all viruses, including 39 of B/Wisconsin/1/2010 viruses and 11 of B/Brisbane/60/2008 viruses.

All circulating influenza viruses tested (except one) were sensitive to oseltamivir. The first oseltamivir resistant influenza A(H1N1)pdm09 was detected from a 26 year old male who was hospitalised with acute upper respiratory infection within 7 days after returning to New Zealand from India. This virus is genetically closer to the Indian A(H1N1)pdm09 viruses than the New Zealand A(H1N1)pdm09 viruses.

## 2.1 Community-based surveillance

## 2.1.1 ESR's sentinel GP-based surveillance

The New Zealand sentinel GP surveillance system was established in 1991 as part of the World Health Organization (WHO) global program for influenza surveillance. The system is operated nationally by the Institute of Environmental Science and Research (ESR) and locally by

surveillance coordinators in the public health units of the country's 20 District Health Boards (DHB). Surveillance is conducted during May–September (the southern hemisphere winter) by volunteer sentinel GP's distributed across New Zealand.

The sentinel system defines a case of ILI as *an acute respiratory tract infection characterized by an abrupt onset of at least two of the following: fever, chills, headache, and myalgia.* Each participating GP records the daily number of patients consulted for ILI, along with the patient's age. These data are collected by local district coordinators each week. Total crude national ILI consultation rates are calculated weekly using the sum of the GP patient populations as the denominator. As age group–specific GP patient population data are not provided by the participating practitioners, the denominator for age group–specific ILI consultation rates is based on New Zealand census data with the assumption that the age group distribution for GP patient populations is the same as the distribution for the entire New Zealand population.

Each participating GP also collects three respiratory samples (nasopharyngeal or throat swab) each week from the first ILI patients examined on Monday, Tuesday, and Wednesday. The GP's forward these samples to the WHO National Influenza Centre at ESR or to hospital virology laboratories in Auckland, Waikato, or Christchurch for virus characterization. Laboratory identification methods include molecular detection by polymerase chain reaction, isolation of the virus, or direct detection of viral antigen. Influenza viruses are typed and subtyped as influenza A, B, seasonal A (H1N1), seasonal A (H3N2), or pandemic (H1N1) 2009. The virus identification data are forwarded by hospital laboratories to ESR each week. ESR compiles and reports national epidemiologic and virologic data on influenza to WHO and also publishes these data on the ESR website (http://www.esr.cri.nz/virology/virology\_weekly\_report.php)

In 2012, 84 sentinel practices were recruited from 19 of 20 DHBs under ESR's sentinel GP-based surveillance. Some sentinel practices did not report every week. The average number of practices participating per week was 81, with an average patient population roll of 375 676 (approximately 8.5% of the New Zealand population). From week 18 (the week ending 6 May 2011) through week 34 (the week ending 26 August 2012), a total of 3571 consultations for ILI were reported from the 19 DHBs. It is estimated that ILI resulting in a visit to a general practitioner affected over 41 873 New Zealanders (0.95% of total population). The cumulative incidence of ILI consultation during this period was 950.6 per 100 000 population.

Weekly national ILI consultation rates for the study period were compared with the same period in 2007 and 2011. From week 18 (ending 6 May 2012) through week 26 (ending 1 July 2012), the weekly ILI consultation rate remained below the baseline level of 50 consultations per 100 000 patient population (Figure 1). The ILI rate first crossed the baseline level in week 27 (2–8 July 2012) and increased to the peak in week 31 (30 July – 5 August 2012) at 154.1 per 100 000 patient population. This was slightly higher than the peak rate of 151.6 consultations recorded in 2010 but lower than the peak of 284.0 consultations in 2009. The peak ILI rate in 2012 was in the middle range (11<sup>th</sup> highest) during 1992-2012 (Figure 2). Since week 31, influenza activity has been declining.



Figure 1. Weekly Consultation Rates for Influenza-like Illness in New Zealand, 2007-2012

Figure 2. Weekly Consultation Rates for Influenza-like Illness in New Zealand, 1992-2012



As in previous years, 2012 consultation rates for ILI varied greatly among DHBs (Figure 3). From week 18 (the week ending 6 May 2011) through week 34 (the week ending 26 August 2012), Waitemata DHB had the highest consultation rate (153.8 per 100 000), followed by South Canterbury (20.5 per 100 000) and Auckland (81.0 per 100 000).



Figure 3. Average weekly consultation rate for influenza-like illness by District Health Board, 2012

Figure 4 shows ILI consultations among DHBs during the peak week 31 (30 July – 5 August 2012). South Canterbury DHB had the highest consultation rate (594.9 per 100 000, 31 cases) followed by Counties Manukau (424.1 per 100 000, 5 cases). The following DHBs also had rates above the national average of 152.0 per 100 000: Tairawhiti (373.4 per 100 000, 12 cases), Waitemata (268.3 per 100 000, 26 cases), Capital and Coast (245.0 per 100 000, 54 cases), Southern (238.9 per 100 000, 137 cases), Hawke's Bay (233.8 per 100 000, 45 cases), Auckland (218.2 per 100 000, 48 cases), and Canterbury (155.1 per 100 000, 110 cases).

Figure 4. ILI consultation rates by District Health Board for the peak week 31 (30 July – 5 August 2012)



A weekly rate <50 ILI consultations per 100 000 patient population is considered baseline activity. A rate of 50–249 is considered indicative of normal seasonal influenza activity, and a rate of 250–399 indicative of higher than expected influenza activity. A rate  $\geq$ 400 ILI consultations per 100 000 patient population indicates an epidemic level of influenza activity.

From week 18 (the week ending 6 May 2011) through week 34 (the week ending 26 August 2012), the highest cumulative ILI consultation rates were recorded among children and aged 1-4 years (1832.0 per 100 000 age group population) and those aged <1 year (1337.9 per 100 000) (Figure 5). The lowest rates were in the  $\geq$ 65 years (580.6 per 100 000) and those in the 50-64 years (792.5 per 100 000).



Figure 5. Sentinel Average Cumulative Consultation Rates for ILI by Age Group, 2012

A total of 775 swabs were sent to virology laboratories from sentinel GPs during week 18 (ending 6 May 2011) through week 34 (ending 26 August 2012). From these swabs, 341 influenza viruses were identified. This gave an overall detection rate of 44.0%. The predominant strain was influenza A(H3N2) (274) including 102 A/Perth/16/2009 (H3N2) -like viruses, 30 A(H1N1)pdm09 including 18 A/California/7/2009 (H1N1)-like viruses, B (15) including one of B/Brisbane/60/2008-like (belonging to the B/Victoria lineage) and six B/Wisconsin/1/2010-like viruses (belonging to the B/Yamagata lineage), and A (not sub-typed) (22) (Figure 6). Influenza A(H3N2) strain has been the predominant strain for the most of the winter season in 2012.

# Figure 6. Number of influenza viruses reported by type and week from sentinel surveillance



### 2.1.2 HealthStat GP-based surveillance

HealthStat is a computer-based routine surveillance system of a nationally representative random sample of approximately 100 general practices that code for influenza-like-illness (ILI). The case definition used for ILI by HealthStat is: "acute URTI, with abrupt onset of 2+ symptoms from chills, fever, headache and myalgia". This surveillance system monitors the number of people who have primary care (GP) consultations. HealthStat is based on the automated downloads from GP practice management computer systems. This service is provided to ESR by CBG Health Research Ltd. HealthStat GP-based surveillance does not contain a component of the virological surveillance.

Analysis is frequency based with alarms raised by identifying statistical deviations (aberations) from previous counts. The analysis of the ILI count is based on the cumulative summation (CUSUM) algorithm implemented in Early Aberration Reporting System (EARS) application developed by the Centres for Disease Control and Prevention (CDC), Atlanta, United States. EARS has three sensitivity thresholds (high, medium and low). If the daily call count exceeds a threshold a flag is signalled.

Figure 7 below shows the weekly rate of ILI per 100 000 registered population, 2008-2012. The 2009 and 2010 data shows major difference compared to other surveillance systems, probably reflecting low sensitivity of the coding practices in 2009. It appears that the coding practices have been improved since 2010.



Figure 7. HealthStat ILI consultation rates by week, 2008-2012 Weekly rate of ILI per 100,000 registered population

Overall, the trend of the 2012 data is similar to ESR's sentinel GP surveillance but with overall lower ILI rates (Figure 8 below). HealthStat recorded the peak (96.9 per 100 000) in week 31 which was lower than the peak (154.1 per 100 000 in week 31) recorded by ESR's sentinel surveillance.

Figure 8. ESR and HealthStat sentinel GP-based ILI rates comparison, 2012



#### 2.2 Hospital-based surveillance

# 2.2.1 Southern hemisphere influenza and vaccine effectiveness research and surveillance (SHIVERS)

Recent global experience with pandemic influenza A(H1N1)pdm09 highlights the importance of monitoring severe respiratory disease. Hospital surveillance for severe acute respiratory infections (SARI) provides evidence to inform public health and clinical practice to reduce the impact of influenza virus infection and other important respiratory pathogens and support pandemic preparedness. Enhanced, active, year-round, population-based surveillance has been established for SARI cases admitted to hospitals in the Auckland region with a population of 838,000 people, covering Auckland District Health Board (ADHB) and Counties Manukau District Health Board (CMDHB). The aims of SARI surveillance are:

- To measure the burden of severe disease caused by influenza and other respiratory pathogens;
- To monitor trends in severe disease caused by influenza and other respiratory pathogens;
- To identify high risk groups that should be prioritized for prevention and treatment;
- To monitor antigenic, genetic and antiviral characteristics of influenza viruses associated with severe disease.
- To provide a study base to estimate the effectiveness of influenza vaccine.

Any inpatient with suspected respiratory infections admitted overnight to each of the four DHB hospitals are to be screened by research nurses daily. Overnight admission is defined as: "*A patient who is admitted under a medical team, and to a hospital ward or assessment unit*". Suspected respiratory infections include acute infections and acute exacerbations of chronic respiratory conditions. The scope is covered by the following broad conditions:

- Suspected acute upper respiratory tract infection (including coryza, pharyngitis)
- Suspected croup
- Suspected bronchiolitis (in children)
- Suspected pneumonia
- Exacerbations of asthma
- Exacerbations of childhood chronic lung disease (including bronchiectasis, cystic fibrosis)
- Exacerbations of adult chronic lung disease (including COPD, emphysema, bronchitis)
- Respiratory failure
- Other suspected acute respiratory infections
- Febrile illness with respiratory symptoms (including shortness of breath)
- Other suspected acute respiratory infection

All patients with suspected respiratory infections are ascertained to see whether they meet the WHO SARI case definition: An acute respiratory illness with:

- a history of fever or measured fever of  $\geq$  38°C, **AND**
- cough, AND
- onset within the past 7 days, AND
- requiring inpatient hospitalization

If a patient with suspected respiratory infection who meet SARI case definition, a respiratory sample is collected for testing influenza and other respiratory pathogens. In addition, the patient information is captured via a case report form contains the following data elements:

- Patient demographics
- History of presenting illness
- Co-morbidities

- Disease course and outcome, including major treatments, ICU admission and SARI-related mortality
- Additional questions designed to ascertain more detailed information regarding possible epidemiologic risk factors for SARI, environmental factors and health conditions (vaccination and smoking etc)
- Laboratory results

This report summarises data obtained from SARI surveillance from 30 April (week 18) to 9 September (week 36) in 2012. This includes incidence, demographic characteristics, clinical outcomes and aetiologies for SARI cases and preliminary analysis for vaccine effectiveness.

### SEVERE ACUTE RESPIRATORY INFECTION (SARI)

From 30 April 2012 to 9 September 2012, there were 50449 acute admissions to ADHB and CMDHB hospitals. A total of 3896 patients with suspected respiratory infections were assessed in these hospitals. Of these, 1804 (46.3%) patients met the SARI case definition. Among these SARI patients, 307 (17%) had influenza viruses detected. Table 1 shows the admission diagnoses/syndromes of the suspected respiratory infections and SARI cases since start of the SARI surveillance and in week 36.

|                                                                                    | Week 36, end  | ling 9 Septemi | ber 2012 | Cumulativ     | ve since 30 / | April 2012  |
|------------------------------------------------------------------------------------|---------------|----------------|----------|---------------|---------------|-------------|
| Admission diagnoses/syndrome                                                       | Overall (%) S | ARI cases Prop | SARI (%) | Overall (%) S | SARI cases Pr | op SARI (%) |
| Suspected acute upper respiratory infection (including coryza, pharyngitis)        | 10 (4.4)      | 4              | 40.0     | 201 (5.2)     | 118           | 58.7        |
| Suspected croup                                                                    | 0 (0)         | 0              | 0.0      | 20 (0.5)      | 10            | 50.0        |
| Suspected bronchiolitis (in children)                                              | 34 (15)       | 8              | 23.5     | 604 (15.5)    | 328           | 54.3        |
| Suspected pneumonia                                                                | 72 (31.9)     | 44             | 61.1     | 982 (25.2)    | 631           | 64.3        |
| Exacerbation of adult chronic lung disease (including COPD, emphysema, bronchitis) | 30 (13.3)     | 10             | 33.3     | 469 (12)      | 125           | 26.7        |
| Exacerbation of asthma                                                             | 21 (9.3)      | 6              | 28.6     | 352 (9)       | 116           | 33.0        |
| Exacerbations of bronchiectasis                                                    | 0 (0)         | 0              | 0.0      | 20 (0.5)      | 7             | 35.0        |
| Respiratory failure                                                                | 3 (1.3)       | 0              | 0.0      | 37 (0.9)      | 11            | 29.7        |
| Febrile illness with respiratory symptoms (including shortness of breath)          | 31 (13.7)     | 23             | 74.2     | 294 (7.5)     | 196           | 66.7        |
| Other suspected acute respiratory infection                                        | 22 (9.7)      | 8              | 36.4     | 789 (20.3)    | 232           | 29.4        |
| Not provided                                                                       | 3 (1.3)       | 0              | 0.0      | 128 (3.3)     | 30            | 23.4        |
| Total                                                                              | 226 (100)     | 103            | 45.6     | 3896 (100)    | 1804          | 46.3        |

Table 1. Admission diagnoses/syndromes of suspected respiratory infections and SARI cases

Table 2 shows the cumulative data on the demographic features of the influenza cases, SARI cases, suspected respiratory infections, and acute hospital admissions. From 30 April 2012 (week 18) to 9 September (week 36) 2012, the proportion of SARI cases among acute hospitalisations was 35.8 per 1000 hospitalisations. Among the 1804 SARI cases, 1508 were residents of ADHB and CMDHB, giving a cumulative SARI incidence of 180 per 100 000 population. 69 SARI cases were admitted to ICU; nine SARI cases were reported to have died during this period.

Figure 9 shows the weekly incidence of SARI cases per 100 000 population for ADHB and CMDHB residents as well as the numbers of SARI and influenza positive cases.

|                     |            | Cumulative since 30 April 2012 |             |                                       |                                                          |                           |  |
|---------------------|------------|--------------------------------|-------------|---------------------------------------|----------------------------------------------------------|---------------------------|--|
| Characteristics     | Admissions | Assessed                       | Cases (%)   | Cases<br>per 1000<br>hospitalisations | Population <sup>1</sup><br>incidence<br>(per 100<br>000) | Influenza<br>positive (%) |  |
| Overall             | 50449      | 3896                           | 1804 (46.3) | 35.8                                  | 180                                                      | 307 (17)                  |  |
| Age group (years)   |            |                                |             |                                       |                                                          |                           |  |
| < 1                 | 2393       |                                | 331         | 138.3                                 | 2279.7                                                   | 37 (11.2)                 |  |
| 1 to 4              | 4151       |                                | 235         | 56.6                                  | 412.8                                                    | 33 (14)                   |  |
| 5 to 19             | 6197       |                                | 92          | 14.8                                  | 40.0                                                     | 22 (23.9)                 |  |
| 20 to 34            | 8856       |                                | 147         | 16.6                                  | 69.1                                                     | 32 (21.8)                 |  |
| 35 to 49            | 7818       |                                | 147         | 18.8                                  | 71.2                                                     | 33 (22.4)                 |  |
| 50 to 64            | 8021       |                                | 228         | 28.4                                  | 179.7                                                    | 51 (22.4)                 |  |
| 65 to 79            | 7582       |                                | 258         | 34                                    | 442.5                                                    | 47 (18.2)                 |  |
| 80 and over         | 5431       |                                | 154         | 28.4                                  | 727.3                                                    | 29 (18.8)                 |  |
| Unknown             |            | 2297                           | 212         |                                       |                                                          |                           |  |
| Ethnicity           |            |                                |             |                                       |                                                          |                           |  |
| Maori               | 6984       |                                | 295         | 42.2                                  | 277.1                                                    | 46 (15.6)                 |  |
| Pacific Peoples     | 11180      |                                | 503         | 45                                    | 374.4                                                    | 114 (22.7)                |  |
| Asians              | 6838       |                                | 150         | 21.9                                  | 87.4                                                     | 30 (20)                   |  |
| European and others | 25109      |                                | 618         | 24.6                                  | 134.8                                                    | 89 (14.4)                 |  |
| Unknown             | 338        | 2323                           | 238         |                                       |                                                          |                           |  |
| Hospitals           |            |                                |             |                                       |                                                          |                           |  |
| ADHB                | 27959      | 1567                           | 995 (63.5)  | 35.6                                  | 208.4                                                    | 142 (14.3)                |  |
| CMDHB               | 22490      | 1509                           | 735 (48.7)  | 32.7                                  | 151.7                                                    | 160 (21.8)                |  |
| Sex                 |            |                                |             |                                       |                                                          |                           |  |
| Female              | 26492      |                                | 808         | 30.5                                  | 173.7                                                    | 149 (18.4)                |  |
| Male                | 23957      |                                | 811         | 33.9                                  | 183.0                                                    | 138 (17)                  |  |
| Unknown             | 0          | 2269                           | 185         |                                       |                                                          |                           |  |

# Table 2. Demographic characteristics of SARI and influenza cases, Weeks 18-36

<sup>1</sup>Includes only SARI cases residing in the study area, ADHB and CMDHB; cumulative incidence calculated for the period between week 18 and week 36 using census 2006 population. Incidence calculated on less than 5 cases should be interpreted with caution.





## RESPIRATORY PATHOGEN SURVEILLANCE

From 30 April 2012 to 9 September 2012, 1475 SARI specimens have been tested and 319 (21.6%) were positive for influenza viruses: A (not subtyped) (106), A(H1N1)pdm09 (72) including 17 A/California/7/2009(H1N1) viruses, A(H3N2) (74) including 23 A/Perth/16/2009(H3N2), and B (68) including 13 B/Wisconsin/1/2010-like virus (belonging to the B/Yamagata lineage) and one B/Brisbane/60/2008. 42 SARI specimens had co-detection of influenza and non-influenza viruses.

From 30 April 2012 to 9 September 2012, 851 SARI specimens were tested for non-influenza respiratory viruses (Table 5). Of these, 387 (45.5%) were positive with the following viruses: respiratory syncytial virus (192), parainfluenza virus type 1 (21), parainfluenza virus type 3 (25), rhinovirus (155), adenovirus (25), and human metapneumovirus (24). 339 SARI specimens had single virus detection and 48 had multiple virus detection.

|                                                  | Cumulative since 30 April 2 |           | April 2012 |
|--------------------------------------------------|-----------------------------|-----------|------------|
| SARI cases virology                              | Cases                       | ICU       | Deaths     |
| Influenza viruses                                |                             |           |            |
| No. of specimens tested                          | 1475                        | 87        |            |
| No. of positive specimens (%)                    | 319 (21.6)                  | 16 (18.4) |            |
| Influenza A                                      |                             |           |            |
| A (not subtyped)                                 | 106                         | 5         |            |
| A (H1N1)pdm09                                    | 72                          | 6         |            |
| A (H3N2)                                         | 74                          | 2         |            |
| Influenza B                                      |                             |           |            |
| B (lineage not determined)                       | 54                          | 2         |            |
| B (Yamagata)                                     | 13                          | 1         |            |
| B (Victoria)                                     | 1                           | -         |            |
| Influenza and non-influenza co-detection (% +ve) | 42 (13.2)                   | 1         |            |
| Non-influenza respiratory viruses                |                             |           |            |
| No. of specimens tested                          | 851                         | 21        |            |
| No. of positive specimens (%) <sup>1</sup>       | 387 (45.5)                  | 13 (61.9) |            |
| Respiratory syncytial virus (RSV)                | 192                         | 7         |            |
| Parainfluenza 1 (PIV1)                           | 21                          | -         |            |
| Parainfluenza 2 (PIV2)                           | 0                           | -         |            |
| Parainfluenza 3 (PIV3)                           | 25                          | 1         |            |
| Rhinovirus (RV)                                  | 155                         | 6         |            |
| Adenovirus (AdV)                                 | 25                          | 1         |            |
| Human metapneumovirus (hMPV)                     | 24                          | 1         |            |
| Single virus detection (% of positives)          | 339 (87.6)                  | 10        |            |
| Multiple virus detection (% of positives)        | 48 (12.4)                   | 3         |            |

Table 3. Influenza and non-influenza respiratory viruses among SARI cases, 30 April 2012 to26 August 2012

The temporal distribution of the number and proportion of the influenza viruses and non-influenza respiratory viruses is shown in Figures 10 & 11. Influenza A(H1N1)pdm09 was the predominant strain over A(H3N2) from week 23 (ending 10 June) to week 29 (ending 22 July). Since week 30 (ending 29 July), A(H3N2) became the predominant strain.

# Figure 10. Temporal distribution of the number and proportion of influenza viruses from SARI specimens by type and week<sup>1</sup>



Figure 11. Temporal distribution of the number and proportion of non-influenza viruses from SARI specimens by type and week<sup>1</sup>



<sup>1</sup>Figures for recent weeks will be underestimates due to time lag in receiving laboratory test results.

### 2.2.2 ICD code based hospitalisation surveillance

Hospitalisation data for influenza (ICD-10AM-VI code I (J09-J11) for 2012 which correlate with previous versions of ICD-10AM codes J10-J11, were extracted from the New Zealand Ministry of Health's NMDS (by discharge date). In this dataset, people who received less than 1 day of hospital treatment in hospital emergency departments were excluded from any time series analysis of influenza hospitalisations during 2000–2012. Influenza-related hospitalisations were conservatively taken to include only those cases where influenza was the principal diagnosis. Repeat admissions were included, as infections with another influenza A subtype or B virus are possible.

From 1 January to 21 September 2012, there were a total of 951 hospitalisations for influenza (Figure 12). The number of influenza hospitalisations in 2012 ranked the third highest during the period from 2000 to 2012.



#### Figure 12. Influenza Hospitalisations, 2000–2012\*

\*Data from 1 Jan to 21 September 2012 only

Figure 13 shows influenza hospitalisations by week discharged. The high number of hospitalisations occurred in July (478) (weeks 26-30). Hospitalisations peaked in week 28.



Figure 13. Influenza Hospitalisations by Week Discharged, 2012

\*Data from 1 Jan to 21 September 2012 only

From 1 January to 21 September 2012, the highest influenza hospitalisation rates were recorded among young infants aged less than one year old (Figure 14), with rates of 165.1 per 100 000 age group population. This was followed by the elderly 80+ years (89.3 per 100 000).

Figure 14. Influenza Hospitalisation Rates by Age Group, 2012\*



\*Data from 1 Jan to 21 September 2012 only

The ethnic distribution of influenza hospitalisations in 2012 is shown in Figure 15. Pacific Peoples had the highest hospitalisation rate (73.6 per 100 000), followed by MELAA (26.5), Maori (24.0), Asian (19.9), and European or Other (16.5).





\*Data from 1 Jan to 21 September 2012 only

## 2.2.3 Non-sentinel laboratory surveillance

Non-sentinel laboratory surveillance is conducted by the New Zealand virus laboratory network consisting of the National Influenza Centre at ESR and four hospital virology laboratories in Auckland, Waikato, Wellington, and Christchurch. ESR collates year-round national laboratory data on influenza from mainly hospital in-patient and outpatients during routine viral diagnosis.

A total of 5781 non-sentinel swabs were received during 1 January to 26 August 2012. Among them, 1659 influenza viruses were identified. This gave an overall detection rate of 28.7%. The predominant strain was influenza A(H3N2) (1082) including 141 A/Perth/16/2009 (H3N2)-like viruses, 207 A(H1N1)pdm09 including 52 A/California/7/2009 (H1N1)-like viruses, B (163) including 10 of B/Brisbane/60/2008-like (belonging to the B/Victoria lineage) and 33 B/Wisconsin/1/2010-like viruses (belonging to the B/Yamagata lineage), and A (not sub-typed) (207) (Figure 16). Influenza A(H3N2) strain has been the predominant strain for the most of the winter season.





\*data is only shown from week 18.

#### 2.3 Event-based surveillance (telephone health advice service – Healthline)

Healthline is the free national 0800 24 hour telephone health advice service funded by the Ministry of Health. Calls made to Healthline are triaged using electronic clinical decision support software. Data collected are daily counts of all symptomatic calls made to Healthline and those triaged for Influenza-Like-Illness (ILI). Note that about 70% of all calls to Healthline are symptomatic (other calls not part of this analysis include queries for information etc).

Analysis is frequency based with alarms raised by identifying statistical deviations (aberations) from previous calls. Data are reported for all ages and in five age bands (0–4, 5–14, 15–44, 45–64, 65+ years). The analysis of the call frequency is based on the cumulative summation (CUSUM) algorithm implemented in Early Aberration Reporting System (EARS) application developed by the Centres for Disease Control and Prevention (CDC), Atlanta, United States. EARS has three sensitivity thresholds (high, medium and low). If the daily call count exceeds a threshold a flag is signalled.

Cases of ILI are defined as those that are recorded in the Healthline database as having one of the following 18 guidelines: adult fever; breathing problems; breathing difficulty – severe (paediatric); colds (paediatric); cough (paediatric); cough – adult; fever (paediatric); flu-like symptoms or known/suspected influenza; flu like symptoms pregnant; influenza (paediatric); headache; headache (paediatric); muscle ache/pain; sore throat (paediatric); sore throat/hoarseness; sore throat/hoarseness pregnant; upper respiratory tract infections/colds; upper respiratory tract infections/colds – pregnant.

Figure 17 shows the weekly number of calls to Healthline for ILI during 2009-2012. Healthline calls in 2012 were higher than 2011, lower than 2009-2010. In 2012, Healthline calls had the peak in week 31, correlated with the peak from the sentinel GP surveillance in week 31.

#### Figure 17. Weekly number of ILI-related calls to Healthline, 2009-2012



Weekly number of ILI-related calls to Healthline 2009 – 2011

## 3. NEW ZEALAND STRAIN CHARACTERISATIONS

#### 3.1 Circulating strains in 2012

A total of 2000 influenza viruses were detected from sentinel and non-sentinel surveillance in 2012 from week 1 (2-8 January 2012) to week 34 (20-26 August 2012) (Figure 18). The predominant strain was A(H3N2) (1356) including 243 A/Perth/16/2009 (H3N2)-like viruses, A(H1N1)pdm09 (237) including 70 A/California/7/2009 (H1N1)-like virus, and A (Not subtyped) (229), and B (178) including 11 of B/Brisbane/60/2008-like (belonging to the B/Victoria lineage) and 39 B/Wisconsin/1/2010-like viruses (belonging to the B/Yamagata lineage).





The influenza virus detections by type and subtype for weeks 1 to 34, 2012 is shown in Table 4.

| Viruses                           | All viruses (%) | Antigenically<br>typed/sub-typed (%) |  |
|-----------------------------------|-----------------|--------------------------------------|--|
| Influenza A                       | 229 (11.5)      |                                      |  |
| A (not sub-typed)                 | 229 (11.5)      |                                      |  |
| Influenza A(H1N1)pdm09            | 237 (11.9)      |                                      |  |
| A(H1N1)pdm09 by PCR               | 167 (8.4)       |                                      |  |
| A/California/7/2009 (H1N1) – like | 70 (3.5)        | 70 (19.3)                            |  |
| Influenza A(H3N2)                 | 1356 (67.8)     |                                      |  |
| A(H3N2) by PCR                    | 1113 (55.7)     |                                      |  |
| A/Perth/16/2009 (H3N2) – like     | 243 (12.2)      | 243 (66.9)                           |  |
| Influenza B                       | 178 (8.9)       |                                      |  |
| B by PCR                          | 128 (6.4)       |                                      |  |
| B/Victoria lineage                | 11 (0.6)        | 11 (3.0)                             |  |
| B/Yamagata lineage                | 39 (2.0)        | 39 (10.7)                            |  |
| Total                             | 2000 (100)      | 363 (100)                            |  |

Table 4. Influenza viruses by type and subtype, 2012

Overall, influenza A(H3N2) was the predominant strain among all influenza viruses. It represented 67.8% (1356/2000) of all viruses. A/Perth/16/2009 (H3N2)-like viruses represented 66.9% (243/363) of all antigenically typed and subtyped viruses.

Influenza A(H1N1)pdm09 viruses (237) were detected, 11.9% (237/2000) of all viruses. A/California/7/2009 (H1N1)-like viruses represented 19.3% (70/363) of all antigenically typed and subtyped viruses.

Influenza B viruses (178) represented 12.2% (178/2000) of all viruses. B/Victoria lineage viruses (B/Brisbane/60/2008-like strain) represented 3% (11/363) of all antigenically typed and subtyped viruses. B/Yamagata lineage viruses (B/Wisconsin/1/2011-like strain) represented 10.7% (39/363) of all antigenically typed and subtyped viruses.

#### **3.2 Predominant strains during 1990-2012**

Overall, the patterns of the predominant strains during 1990-2012 are described below:

- Influenza A(H1N1)pdm09 strain has become the predominant strain in 2010 and 2009.
- Seasonal influenza A(H1N1) strain predominated in three seasons (1992, 2000 and 2001) with associated relatively low hospitalisations (193 in 1992, 228 in 2000 and 379 in 2001). It has not been detected in New Zealand since 2010.
- Seasonal influenza A(H3N2) strain predominated for 12 seasons (1990, 1993, 1994, 1996, 1998, 1999, 2002, 2003, 2004, 2006, 2007 and 2012). A/Fujian/411/02 (H3N2)-like strain predominated in 2003 with the highest recorded hospitalisations during 1990-2008. A/Wuhan/359/95 (H3N2)-like strain predominated in 1996 with associated 94 deaths (93 of these deaths were in people aged ≥65 years).
- Influenza B strains predominated for six seasons (1991, 1995, 1997, 2005, 2008, and 2011). In 2005, the disease burden was high in children aged 5-19 years with associated deaths in 3 children.
- Since the introduction of the B-Victoria lineage viruses into New Zealand in 2002, this strain predominated over the B/Yamagata lineage viruses in every three years in New Zealand (2002, 2005, 2008 and 2011).

Figure 19 shows the number and percentage of typed and subtyped (not including A not subtyped) influenza viruses from 1990 to 2012.



#### Figure 19. Influenza viruses by type and subtypes, 1990-2012

#### \*2009-2011 A(H1N1) is influenza A(H1N1)pdm09

Figure 20 shows the number and percentage of all antigenically typed B viruses from 1990 to 2012. Since the introduction of the B-Victoria lineage viruses into New Zealand in 2002, this strain predominated over the B/Yamagata lineage viruses in every three years in New Zealand in 2002, 2005, 2008 and 2011.



#### Figure 20. Influenza B antigenic types, 1990-2012

## 3.3 Influenza A(H1N1)pdm09

Representative of influenza A(H1N1)pdm09 isolates (70) were antigenically subtyped at the WHO National Influenza Centre at ESR using sheep/rabbit antisera supplied by the WHO Collaborating Centre (WHOCC) in Melbourne. Some of these isolates were also sent to WHOCC-Melbourne. Results indicated that New Zealand isolates were antigenically closely related to the A(H1N1)pdm09 reference strain A/California/7/2009 (H1N1)pdm09. The results of the genetic analysis of the hemagglutinatin (HA) gene and neuraminidase (NA) of the representative viruses are shown in Figures 21 & 22.

#### 3.4 Seasonal influenza A(H3N2)

Representative seasonal influenza A(H3N2) isolates (243) were antigenically subtyped at the WHO National Influenza Centre at ESR using HAI typing kit supplied by the WHO Collaborating Centre (WHOCC) in Melbourne. Some of these isolates were also sent to WHOCC-Melbourne. Results indicated that New Zealand isolates were reacted well antigenically to the reference strain A/Perth/16/2009 (H3N2) with small number of low reactor identified. Genetically, A(H3N2) viruses have drifted away from A/Perth/16/2009 strain. The sequenced viruses showed that they fell into the genetic group 3C within the A/Victoria/316/2011 genetic clade. The results of the genetic analysis of the hemagglutinatin (HA) gene of the representative viruses are shown in Figure 23.

#### 3.5 Influenza B

Representative seasonal influenza B/Victoria lineage isolates (B/Brisbane/60/2008 – like) (11) and B/Yamagata lineage isolates (B/Wisconsin/1/2010-like) (39) isolates were antigenically typed at the WHO National Influenza Centre at ESR using HAI typing kit supplied by the WHO Collaborating Centre (WHOCC) in Melbourne. Some of these isolates were also sent to WHOCC-Melbourne. Results indicated that New Zealand isolates were antigenically related to the reference strain B/Brisbane/60/2008, and B/Wisconsin/1/2010–like viruses. The results of the genetic analysis of the hemagglutinatin (HA) gene of the representative viruses are shown in Figures 24 & 25.


# Figure 22. Phylogenetic analysis of NA gene sequence of A(H1N1)pdm09 viruses



Vaccine Recommendations

## Figure 23. Phylogenetic analysis of HA gene sequence of A(H3N2) viruses



Figure 24. Phylogenetic analysis of HA gene sequence of B/Yamagata lineage viruses



## Figure 25. Phylogenetic analysis of HA gene sequence of B/Victoria lineage viruses



# **3.6** Oseltamivir resistance

The WHO National Influenza Centre at ESR employed a phenotypic method (fluorometric neuraminidase inhibition assay) for the surveillance of anti-viral drug resistance in influenza viruses. In addition, NIC at ESR employed a molecular method (PCR and sequencing) to monitor the H275Y mutation (histidine-to-tyrosine mutation at the codon of 275 in N1 numbering) which is known to confer resistance to oseltamivir.

In 2012, fluorometric neuraminidase inhibition assay was used to test a total of 417 influenza viruses. All viruses (except one A(H1N1)pdm09) were sensitive to oseltamivir with mean IC50 values for A(H1N1)pdm09 at 0.32 nM, A(H3N2) at 0.41 nM and B at 11.2 nM (Table 5). The first oseltamivir resistant influenza A(H1N1)pdm09 was detected from a 26 year old male who was hospitalised with acute upper respiratory infection within 7 days after returning New Zealand from India. The results of the fluorometric neuraminidase inhibition assay indicated that the virus had highly reduced sensitivity to oseltamivir with IC50 value of 271 nM, 847 fold higher than the mean of IC50 value (0.32 nM) for the 81 tested influenza A(H1N1)pdm09 viruses. The sequencing analysis of the neuraminidase gene confirmed that the virus had the H275Y mutation (histidine-to-tyrosine at codon 275 in N1 nomenclature), conferring resistance to oseltamivir. In addition, this virus is genetically closer to the Indian A(H1N1)pdm09 viruses than the New Zealand A(H1N1)pdm09 viruses.

During 2006-2007, all influenza A(H1N1) viruses tested were sensitive to oseltamivir. In 2008, six seasonal A(H1N1) viruses (0.8%) were detected, of which, only four were available for antiviral susceptibility testing and were all resistant to oseltamivir. The results of the fluorometric neuraminidase inhibition assay indicated that the four viruses had highly reduced sensitivity to oseltamivir with IC50 values in the range of 500-1700 nM, typical of the recently global emerging oseltamivir-resistant A(H1N1) viruses. Genetic analysis of the neuraminidase gene confirmed that the four viruses had the H275Y mutation (histidine-to-tyrosine at codon 275 in N1 nomenclature), conferring resistance to oseltamivir. None of the patients or their close contacts had received Tamiflu prior to sample collection. In 2009, 25 seasonal A(H1N1) virus were phenotypically tested and all were resistant to oseltamivir. However, all pandemic A(H1N1) tested between 2009-2012 were sensitive to oseltamivir.

| 1 adie 5. Antiviral susceptibility to oseitamivir for influenza viruses, 2006-2012 |      |      |      |      |      |        |        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|------|------|------|------|------|--------|--------|--|--|--|--|--|--|
| Influenza type/sub-type                                                            | 2006 | 2007 | 2008 | 2009 | 2010 | 2011** | 2012** |  |  |  |  |  |  |
| Influenza B                                                                        |      |      |      |      |      |        |        |  |  |  |  |  |  |
| Number of isolates tested                                                          | 1    | 132  | 306  | -    | 1    | 179    | 64     |  |  |  |  |  |  |
| Mean IC50 (nM)                                                                     | -    | 37.5 | 26.5 | -    | -    | 31.9   | 11.2   |  |  |  |  |  |  |
| Standard Deviation (nM)                                                            | -    | 22.5 | 16.9 | -    | -    | 15.3   | 5.8    |  |  |  |  |  |  |
| Minimum IC50 (nM)                                                                  | -    | 0.9  | 0.22 | -    | -    | 4.12   | 4.8    |  |  |  |  |  |  |
| Maximum IC50 (nM)                                                                  | -    | 97.4 | 87.8 | -    | -    | 71.3   | 31.8   |  |  |  |  |  |  |
| Influenza A(H3N2)                                                                  |      |      |      |      |      |        |        |  |  |  |  |  |  |
| Number of isolates tested                                                          | 189  | 45   | 120  | -    | 1    | 70     | 271    |  |  |  |  |  |  |
| Mean IC50 (nM)                                                                     | 0.7  | 0.38 | 0.28 | -    | -    | 0.46   | 0.41   |  |  |  |  |  |  |
| Standard Deviation (nM)                                                            | 0.27 | 0.26 | 0.17 | -    | -    | 0.27   | 0.19   |  |  |  |  |  |  |
| Minimum IC50 (nM)                                                                  | 0.06 | 0.07 | 0.01 | -    | -    | 0.06   | 0.08   |  |  |  |  |  |  |
| Maximum IC50 (nM)                                                                  | 1.4  | 1.13 | 1.08 | -    | -    | 1.5    | 1.22   |  |  |  |  |  |  |
| Seasonal influenza A(H1N                                                           | 11)  |      |      |      |      |        |        |  |  |  |  |  |  |
| Number of isolates tested                                                          | 18   | 136  | 4    | 25   | -    | -      | -      |  |  |  |  |  |  |
| Mean IC50 (nM)                                                                     | 1.26 | 0.81 | 768  | 1385 | -    | -      | -      |  |  |  |  |  |  |
| Standard Deviation (nM)                                                            | 0.89 | 0.64 | 287  | 1996 | -    | -      | -      |  |  |  |  |  |  |
| Minimum IC50 (nM)                                                                  | 0.2  | 0.05 | 573  | 305  | -    | -      | -      |  |  |  |  |  |  |
| Maximum IC50 (nM)                                                                  | 3    | 2.7  | 1184 | 7912 | -    | -      | -      |  |  |  |  |  |  |
| Influenza A(H1N1)pdm09                                                             |      |      |      |      |      |        |        |  |  |  |  |  |  |
| Number of isolates tested                                                          | -    | -    | -    | 483  | 334  | 12     | 82     |  |  |  |  |  |  |
| Mean IC50 (nM)                                                                     | -    | -    | -    | 0.4  | 0.68 | 0.54   | 0.32   |  |  |  |  |  |  |
| Standard Deviation (nM)                                                            | -    | -    | -    | 0.24 | 0.41 | 0.24   | 0.2    |  |  |  |  |  |  |
| Minimum IC50 (nM)                                                                  | -    | -    | -    | 0.09 | 0.01 | 0.19   | 0.11   |  |  |  |  |  |  |
| Maximum IC50 (nM)                                                                  | -    | -    | -    | 1.4  | 2.05 | 0.965  | 271    |  |  |  |  |  |  |

# Table 5. Antiviral susceptibility to oseltamivir for influenza viruses, 2006-2012

\*IC50; inhibitory concentration of the drug at which a 50% reduction in enzymatic activity is observed.

\*\* Mean and standard deviation calculated for 2011 and 2012 excludes 3 outliers deemed to be resistant to oseltamivir (having IC50 values >10-fold higher than the overall mean for a given subtype recorded for all years). Outliers excluded were one pandemic influenza A/H1N1 viruses in 2012 and two influenza B viruses in 2011.)

# 4. RECENT STRAIN CHARACTERISATION FOR SOUTHERN HEMISPHERE VIRUSES AND LIKELY VACCINE CANDIDATES

# 4.1 Influenza A(H1N1)pdm09

The influenza A(H1N1)pdm09 virus was first detected in April 2009 in the United States and was responsible for outbreaks in Mexico in March and April 2009. Outbreaks subsequently occurred in all regions of the world and, by July 2009, influenza A(H1N1)pdm09 was the predominant influenza virus circulating in many countries in the Americas, Asia, Europe and Oceania.

During the 2012 influenza season, 20 A(H1N1)pdm09 viruses were received at the Melbourne WHOCC from 3 countries with most coming from Australia and New Zealand. The virology laboratories in New Zealand use the kit supplied by the Melbourne WHOCC to analyse influenza A(H1N1)pdm09 strains. The antiserum used for antigenic typing was the rabbit/sheep antisera raised against A/California/7/2009-like strain. A total of 237 influenza A(H1N1)pdm09 viruses were detected in New Zealand in 2012, of which, 70 had undergone antigenic typing and they were all antigenically closely related to the A/California/7/2009-like strain.

Among all of the influenza A(H1N1)pdm09 viruses analysed at the Melbourne WHOCC, most of the viruses reacted well with ferret sera to A/California/7/2009, with 13.7% of A(H1N1)pdm09 viruses being classified as low reactors ( $\geq$ 8-fold reduction compared with the homologous titre) (Tables 3.3 and 3.4 in Appendix 3). Many of these low reactors had changes in the HA gene in the 153-158 amino acid region which has been shown to reduce reactivity in HI assays but as these changes were mostly not in the original clinical samples, these mutations appear to be artefacts caused by isolation in MDCK cells or in eggs. In addition, a total of 24 influenza A(H1N1)pdm09 viruses were sequenced in the HA gene. The sequence analysis indicated that there was genetic diversity evident in most of the viruses isolated during 2012 with two major sub-clades designated group 7 and group 6 (CDC designations, Figure 3.2 in Appendix 3). The NA (N1) genes of the A(H1N1)pdm09 viruses were also sequenced, resulting in groups similar to their HA grouping (Figure 3.3 in Appendix 3). Furthermore, vaccines containing influenza A/California/7/2009-like antigen stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus and recent influenza A(H1N1)pdm09 isolates. (WER 86(42), and Tables 3.7 & 3.8 in Appendix 3).

In summary, influenza A(H1N1)pdm09 viruses have replaced seasonal A(H1N1) viruses since 2009. HI tests showed that most isolates were antigenically similar to A/California/7/2009-like strain. Current vaccines containing the A/California/7/2009 antigen stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus and recent A(H1N1) influenza isolates. Based on all of the epidemiological, antigenic, genetic and serological data, the WHO consultation recommended vaccines containing a A/California/7/2009 (H1N1)-like strain. The AIVC accepted this recommendation.

# 4.2 Seasonal influenza A(H3N2)

Influenza A(H3N2) has frequently been associated with severe disease and excess mortality in highrisk groups. This subtype has also shown the greatest tendency for antigenic drift as illustrated by the frequency of vaccine formulation changes recommended by the WHO and AIVC (Table 1).

The Melbourne WHOCC analysed 1076 A(H3N2) isolates from eight countries during this period. These viruses made up 68.5% of all viruses analysed at the Melbourne WHOCC. Virtually all of the influenza A(H3N2) viruses were recognised by ferret sera raised against cell propagated A/Victoria/361/2011-like viruses, with no viruses showing reduced reactivity (Tables 4.2,4.3 and

4.4 in Appendix 4). This was not the case for ferret sera raised to egg grown A/Victoria/361/2011 which generally showed marked reductions compared to the homologous titre for recent cell propagated viruses. In addition, HA gene phylogenetic analysis of the influenza A(H3N2) viruses (173) sequenced showed that most viruses were A/Victoria/208/2009-like. Most of the recent viruses fell into group 3 with only a few viruses in groups 5 & 6 (CDC designations, Figure 4.2 in Appendix 4). Within group 3, viruses were further divided into 3 subgroups (3A, 3B, 3C) with the majority falling into group 3C. Group 3 had an A198S, V223I and N312S changes with additional S45N and T48I changes in 3C. Sequence analysis of the N2 NA gene analysed in 2012 showed that the most recent viruses grouped in a similar manner as their HA genes (Figure 4.3 in Appendix 4). Furthermore, vaccines containing influenza A/Perth/16/2009 (H3N2)-like antigens stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus and to recent A(H3N2) isolates. Similar results were obtained in microneutralisation tests for a subset of sera and viruses (WER 86(42), and Tables 4.10 and 4.11 in Appendix 4).

In summary, influenza A(H3N2) viruses were associated with widespread outbreaks in many southern hemisphere countries. Most isolates were antigenically similar to A/Perth/16/2009-like strain. Current vaccines containing the A/Victoria/361/2011 antigen stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus, when measured against cell-propagated A/Victoria/361/2011 and to recent A(H3N2) isolates. Based on all of the epidemiological, antigenic, genetic and serological data, the WHO Consultative Group recommended the H3 component of the vaccines containing an A/Victoria/361/2011 (H3N2)-like strain. AIVC accepted this recommendation.

# 4.3 Influenza B

Two distinct lines of influenza B have co-circulated in many countries during recent years. This dates from the late 1980s when the B/Panama/45/90 variant of influenza B was first observed. This strain and its further variants of the Yamagata/16/88 lineage (most recently representative strain-B/Florida/4/2006) spread worldwide, whereas strains of the previous B/Victoria/2/87-like viruses continued to circulate in Asia and subsequently underwent independent evolution as an antigenically distinct lineage (most recent representative strain-B/Brisbane/60/2008). For reasons not wholly understood, these remained geographically restricted to Asia until 2001. In 2002 the B/Victoria/2/87 lineage viruses were the predominant viruses worldwide.

Both recent B/Victoria-like strains (B/Brisbane/60/2008 is the current reference strain) and B/Yamagata-like strains (B/Wisconsin/1/2010 is the current reference strain) continued to be isolated worldwide in 2012. The proportion of B/Yamagata/16/88 lineage viruses increased in many parts of the world but B/Victoria/2/87 lineage viruses predominated in some countries. A total of 178 influenza B viruses were detected in New Zealand in 2012. Among all antigenically typed B viruses, 39 were as the B/Yamagata lineage and 11 as the B/Victoria lineage.

476 influenza B isolates were received in 2012 by the Melbourne WHOCC from nine countries (30.3% of total isolates). The majority of isolates (77.9%) were typed as B/Victoria lineage. When B/Victoria-lineage viruses were reacted with ferret sera raised against egg grown B/Brisbane/60/2008-like virus, about 42% of viruses showed reduced reactivity ( $\geq$ 8-fold reduction compared with the homologous titre). However, when ferret serum raised to cell propagated virus was used only a small percentage of viruses were low reactors in HI assays. The remaining 22.1% of B viruses were of the B/Yamagata lineage and these viruses were generally reacted well with ferret sera to egg derived B//Wisconsin/1/2010 with only 9% of viruses showing reduced reactivity (( $\geq$ 8-fold reduction); HI assays in Tables 5.2, 5.3, 5.4 and 5.5 (Appendix 5) were performed at the Melbourne WHOCC. In addition, sequence analysis of the HA1 gene of recent isolates showed that recent isolates fell into one of the two major lineages of B viruses (B/Victoria/2/87 or

B/Yamagata/16/88) consistent with their antigenic typing. The B/Victoria lineage viruses mostly grouped in the B/Brisbane/60/2008 group with signature amino acid changes at S172P, N75K, N165K with no viruses grouping with the older B/Malaysia/2506/2004-like viruses with a T37I substitution. B/Yamagata lineage fell into two clades represented by B/Wisconsin/1/2010-like virus (group 3) and B/Brisbane/3/2007-like virus group (Group 2), with increasing number of viruses falling in group 2. Group 2 viruses have several amino acid changes including P48K, P108A, and T182A compared to group 3 viruses (Figures 5.5, and 5.7, in Appendix 5). The NA sequence analysis from viruses with a B/Brisbane/60/2008-like HA showed some heterogeneity with some viruses having similar groups as their HA and others having HA's from different HA groupings. This reasserting of NA genes is often seen with influenza B viruses (Figure 5.6 in Appendix 5). B/Yamagata lineage virus NA genes matched the HA genes falling into the same group 2 or groups 3 pattern as their HA did (Figure 5.8 in Appendix 5). Furthermore, vaccines containing influenza B/Brisbane/60/2008-like antigens stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus and to recent B/Victoria-lineage isolates. Vaccines containing influenza B/Wisconsin/1/2010-like antigens stimulated anti-HA antibodies of similar geometric mean HI titres to the vaccine virus and the majority of representative recent B/Yamagata/16/88 lineage viruses. (WER 86(42), Tables 5.9, 5.10, 5.11 and 5.12 in Appendix 5).

In summary, influenza B outbreaks were reported in southern hemisphere countries. The proportion of B/Yamagata/16/88 lineage viruses increased in many parts of the world but B/Victoria/2/87 lineage viruses predominated in some countries. The majority of recent B/Victoria/2/87 lineage viruses were antigenically and genetically closely related to B/Brisbane/60/2008. Most recently isolated B/Yamagata/16/88 lineage viruses were antigenically closely related to B/Wisconsin/1/2010-like viruses. Current vaccines containing B/Brisbane/60/2008 antigen stimulated HA antibodies that were similar in titre to recently isolated B/Brisbane/60/2008-like viruses. However, titres were lower to recent viruses of the B/Yamagata/16/88 lineage. Vaccines containing B/Wisconsin/1/2010 antigen stimulated HA antibodies that were similar in titre to recently isolated B/Yamagata/16/88 lineage but titres were lower to recent viruses of the B/Victoria/2/87 lineage. In light of the increase in the proportion of B/Yamagata/16/88 lineage viruses relative to B/Victoria/2/87 lineage viruses over the last 2 months, a B/Yamagata/16/88 lineage virus is recommended for the 2013 southern hemisphere season trivalent vaccine. The AIVC accepted this recommendation.

# 5. SUMMARY OF VACCINE COMPOSITION RECOMMENDATION

It is recommended that the influenza vaccine formulation for New Zealand for 2013 is:

- A(H1N1) an A/California/7/2009 (H1N1)pdm09 like virus
- A(H3N2) an A/Victoria/361/2011 (H3N2) like virus
- B a B/Wisconsin/1/2010 like virus

# 5.1 Explanation of "like" strains suitable for inclusion in vaccine

In the past, some strains of influenza recommended for inclusion in the vaccine formulation have been unsuitable vaccine candidates due to their poor growth potential with resulting low yields or poor serological responses in vaccinees. Under the "like" strain concession in the vaccine recommendation, an antigenically similar strain can be substituted which has the qualities that are lacking in the prototype strain.

The AIVC considered the information about international surveillance by WHO, recent data from Australia, New Zealand, South Africa and Argentina on influenza epidemiology and virus strain characterisation, and the recommendations of the WHO annual consultation on the composition of influenza vaccine for the southern hemisphere, held in Geneva on 26-28 September 2011.

The AIVC agreed to adopt the September 2011 WHO recommendations. The influenza vaccine components for year 2012 season should contain the following:

| A (H1N1):  | an A/California/7/2009 (H1N1)-like strain, | 15 μg HA per dose |
|------------|--------------------------------------------|-------------------|
| A (H3N2):  | an A/Victoria/361/2011 (H3N2)-like strain, | 15 µg HA per dose |
| <b>B</b> : | a B/Wisconsin/1/2010-like strain,          | 15 µg HA per dose |

The following available reassortants or viruses are recommended as suitable vaccine strains:

- A(H1N1)pdm09:
  - NYMC X-179A egg or cell, NYMC X-181, NYMC X-181A, NIBRG-121, NIBRG-121xp reassortants derived from A/California/7/2009.
  - NIBRG-122 reassortant derived from A/England/195/2009.
  - IVR-158 reassortant derived from A/Brisbane/10/2010.
  - A reassortant of A/Christchurch/16/2010 NIB-74 has also been produced by NIBSC and is being used by a European manufacturer.
- A(H3N2):
  - A/Victoria/361/2011 viruses have been made and distributed by CSL (IVR-165). Most companies are using IVR-165 due to high yields.
  - NYMC (X-217 and X-217A)
  - NIBSC (NIB-79)
- B:
  - B/Wisconsin/1/2010 and B/Sichuan-Anyue/139/2011 but these generally grow poorly.
  - Reassortants of B/Wisconsin/1/2010 and B/Sichuan-Anyue/139/2011have been produced, NYMC-BX-39 (B/Hubei-Wujiagang/158/2009) and NYMC-BX-41A (B/Wisconsin/1/2010), and both appear to have much improved yields compared to their wild type virus counterparts.

APPENDIX 1 - Composition of the Australian Influenza Vaccine Committee 2012

## **AIVC Members and Observers 2012**

## Committee Members (Voting and Non-voting NV):

- 1. Dr Gary Grohmann, OLSS, TGA NV
- 2. Dr Ian Barr, WHOCC NV
- 3. Professor Robert Booy
- 4. Dr Mike Catton, VIDRL
- 5. Prof Dominic Dwyer, ICPMR
- 6. Prof Ian Gust, University of Melbourne
- 7. Dr Alan Hampson, Interflu Pty Ltd
- 8. Dr Sue Huang, CDI, ESR, NZ NV
- 9. Assoc Prof Heath Kelly, VIDRL
- 10. Prof Anne Kelso, WHOCC NV
- 11. Ms Rhonda Owen, DoHA NV
- 12. Dr David Smith, UWA
- 13. Emeritus Prof Greg Tannock, Macfarlane Burnet Institute
- 14. Assoc Prof Helen Marshall
- 15. Dr Tania Dalla Pozza, OLSS, TGA (Secretary) NV
- \*Dr Florette Treurnicht, NICD, SA NV (TC)

## **Observers:**

- 1. Mr Tony Wilson-Williams, Abbott
- 2. Ms Justine Japp, CSL Ltd
- 3. Mr Peter Schoofs, CSL Ltd
- 4. Dr David Crump, GlaxoSmithKline Australia Pty Ltd
- 5. Ms Louise Carter, GlaxoSmithKline Australia Pty Ltd
- 6. Ms Alicia Ham, Sanofi Pasteur
- 7. Dr Nadim Naser, Sanofi Pasteur
- 8. Mr Mathieu Miele Novartis
- 9. Mr John Fox Novartis (TC)

\*Participating by teleconference

**APPENDIX 2** - Isolates Received For Analysis at the Australian WHO Collaborating Centre

| Country             | A(H1N1)<br>pdm09 | A(H3N2) | В    | Mixed | TOTAL |
|---------------------|------------------|---------|------|-------|-------|
| Australia           | 16               | 875     | 406  | 0     | 1297  |
| Fiji                | 0                | 2       | 0    | 0     | 2     |
| Malaysia            | 0                | 0       | 2    | 0     | 2     |
| New Zealand         | 3                | 115     | 28   | 0     | 146   |
| New Caledonia       | 0                | 3       | 3    | 0     | 6     |
| Papua New<br>Guinea | 0                | 7       | 0    | 0     | 7     |
| Philippines         | 0                | 15      | 2    | 0     | 17    |
| Singapore           | 0                | 13      | 14   | 0     | 27    |
| Thailand            | 1                | 1       | 9    | 0     | 11    |
| Vietnam             | 0                | 1       | 0    | 0     | 1     |
| Macau, China        | 0                | 10      | 0    | 0     | 10    |
| Solomon Islands     | 0                | 0       | 3    | 0     | 3     |
| Cambodia            | 0                | 34      | 9    | 0     | 43    |
| Total               | 20               | 1076    | 476  | 0     | 1572  |
| %                   | 1.3              | 68.5    | 30.3 | 0     |       |

Table 3.7 Influenza Viruses Analysed at the Melbourne WHO CC1 March – 12 September 2012

Figure 2.1 Influenza isolates by type/subtype received and analysed at the Melbourne WHO CC 2002-12



APPENDIX 3 – Influenza A(H1N1)pdm09

|    | Date: August 29, 2012    |           | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |            |           |           |           |           |           |           |         |       |              |            |  |
|----|--------------------------|-----------|----------------------------------------------------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-------|--------------|------------|--|
|    | Turkey no. 91            |           |                                                                      |            |           | Refere    | ence Anti | isera     |           |           |         |       |              |            |  |
|    | Sequenced                | Α         | В                                                                    | С          | D         | E         | F         | F         | G         | Н         | I       | J     |              |            |  |
|    |                          | F1656-13D | FS5                                                                  | F1614-143D | F1620-13D | F1686-13D | F1704-14D | F1860-13D | F1857-13D | F1903-13D | MAB 175 | Human | Passage      | Sample     |  |
|    |                          | E4        |                                                                      | C2,MDCK1   | MDCK4     | E2        | E2        | E3        | MDCK1     | E4        |         | Sera  | Details      | Date       |  |
|    | Reference Antigens       | CAL/7     | AUCK/1                                                               | ILLINOIS/9 | BAY/69    | BRIS/10   | CHCH/16   | PERTH/198 | VIC/918   | BRIS/70   |         | Pool  |              |            |  |
| Α  | A/CALIFORNIA/7/2009      | 1280      | 320                                                                  | 320        | 640       | 1280      | 1280      | 640       | 1280      | 2560      | 5120    | 640   | E5           |            |  |
| В  | A/AUCKLAND/1/2009        | 5120      | 640                                                                  | 640        | 1280      | 2560      | 2560      | 2560      | >5120     | >5120     | >10240  | 640   | E4           |            |  |
| С  | A/ILLINOIS/9/2007        | 2560      | 640                                                                  | 1280       | 320       | 640       | 640       | 1280      | 2560      | 2560      | 5120    | 160   | C2,MDCK2     |            |  |
| D  | A/BAYERN/69/2009         | <80       | <40                                                                  | <40        | 640       | 160       | 40        | 80        | <40       | 160       | 2560    | 320   | MDCK7        |            |  |
| E  | A/BRISBANE/10/2010       | 640       | 160                                                                  | 320        | 640       | 2560      | 1280      | 640       | 640       | 640       | 2560    | 640   | E3           |            |  |
| F  | A/CHRISTCHURCH/16/2010   | 2560      | 320                                                                  | 640        | 1280      | 5120      | 2560      | 2560      | 1280      | 2560      | 5120    | 640   | E3           |            |  |
| G  | A/PERTH/198/2010         | 1280      | 320                                                                  | 640        | 320       | 1280      | 640       | 1280      | 1280      | 1280      | 2560    | 320   | E4           |            |  |
| н  | A/VICTORIA/918/2010      | 5120      | 1280                                                                 | 1280       | 1280      | 2560      | 2560      | >5120     | >5120     | >5120     | >10240  | 640   | MDCK2        |            |  |
| 1  | A/BRISBANE/70/2011       | 2560      | 640                                                                  | 1280       | 1280      | 1280      | 1280      | 2560      | 1280      | 2560      | 5120    | 640   | E4           |            |  |
|    | Test Antigens            |           |                                                                      |            |           |           |           |           |           |           |         |       |              |            |  |
| 1  | A/SOUTH AUCKLAND/15/2012 | 2560      | 640                                                                  | 640        | 640       | 2560      | 1280      | 2560      | 2560      | 2560      | 5120    | 640   | SIAT, MDCK2  | 26/06/2012 |  |
| 2  | A/WELLINGTON/10/2012     | 2560      | 640                                                                  | 640        | 640       | 1280      | 640       | 1280      | 2560      | 2560      | 2560    | 160   | MDCK,MDCK1   | 20/06/2012 |  |
| 3  | A/SOUTH AUCKLAND/12/2012 | 1280      | 320                                                                  | 320        | 640       | 640       | 640       | 1280      | 1280      | 1280      | 320     | 80    | MDCKX,MDCK3  | 17/06/2012 |  |
| 4  | A/SINGAPORE/2/2012       | 1280      | 320                                                                  | 640        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 5120    | 160   | MDCK2        | 16/03/2012 |  |
| 5  | A/SINGAPORE/7/2012       | 1280      | 160                                                                  | 160        | 320       | 640       | 640       | 640       | 1280      | 1280      | 2560    | 160   | MDCK0,MDCK1  | 01/06/2012 |  |
| 6  | A/SINGAPORE/12/2012      | 1280      | 320                                                                  | 320        | 320       | 640       | 320       | 1280      | 2560      | 1280      | 5120    | 160   | MDCK0,MDCK1  | 22/06/2012 |  |
| 7  | A/SINGAPORE/8/2012       | 1280      | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 2560    | 320   | MDCK0,MDCK2  | 06/06/2012 |  |
| 8  | A/SINGAPORE/5/2012       | 1280      | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 2560    | 160   | MDCK0,MDCK2  | 19/03/2012 |  |
| 9  | A/SINGAPORE/6/2012       | 1280      | 640                                                                  | 320        | 640       | 1280      | 640       | 1280      | 1280      | 1280      | 2560    | 320   | MDCK0,MDCK2  | 01/06/2012 |  |
| 10 | A/VICTORIA/378/2012      | 1280      | 320                                                                  | 320        | 320       | 640       | 640       | 640       | 1280      | 1280      | 2560    | 320   | MDCK3        | 17/07/2012 |  |
| 11 | A/FIJI/4/2012            | 1280      | 160                                                                  | 320        | 320       | 320       | 320       | 640       | 640       | 1280      | 5120    | 160   | MDCK2        |            |  |
| 12 | A/SRI LANKA/19/2012      | 1280      | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 2560      | 1280      | 2560    | 160   | MDCK2        |            |  |
| 13 | A/SOUTH AUCKLAND/20/2012 | 1280      | 320                                                                  | 320        | 640       | 1280      | 640       | 1280      | 2560      | 1280      | 2560    | 320   | SIAT, MDCK1  | 24/06/2012 |  |
| 14 | A/CHRISTCHURCH/11/2012   | 1280      | 640                                                                  | 640        | 1280      | 1280      | 1280      | 2560      | 2560      | 2560      | 5120    | 320   | SIAT, MDCK1  | 24/06/2012 |  |
| 15 | A/SINGAPORE/1/2012       | 640       | 160                                                                  | 320        | 320       | 640       | 320       | 1280      | 1280      | 1280      | 2560    | 160   | MDCK0, MDCK1 | 20/02/2012 |  |
| 16 | A/SINGAPORE/4/2012       | 640       | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 2560    | 160   | MDCK0,MDCK2  | 14/03/2012 |  |
| 17 | A/SINGAPORE/3/2012       | 640       | 160                                                                  | 640        | 640       | 1280      | 640       | 1280      | 2560      | 2560      | 5120    | 320   | MDCK3        | 09/02/2012 |  |
| 18 | A/VICTORIA/637/2012      | 640       | 320                                                                  | 320        | 320       | 640       | 320       | 1280      | 2560      | 1280      | 2560    | 320   | MDCK2        | 17/07/2012 |  |
| 19 | A/PHILIPPINES/6/2012     | 640       | 320                                                                  | 320        | 320       | 640       | 320       | 640       | 1280      | 1280      | 5120    | 160   | MDCK3        | 31/01/2012 |  |
| 20 | A/PHILIPPINES/1/2012     | 640       | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 5120    | 160   | MDCK2        | 12/01/2012 |  |
| 21 | A/SRI LANKA/22/2012      | 640       | 320                                                                  | 320        | 640       | 1280      | 640       | 1280      | 1280      | 1280      | 2560    | 320   | MDCK2        |            |  |
| 22 | A/WELLINGTON/23/2012     | 640       | 320                                                                  | 160        | 640       | 640       | 640       | 1280      | 1280      | 1280      | 1280    | 160   | SIAT, MDCK1  | 06/07/2012 |  |
| 23 | A/WAIKATO/2/2012         | 640       | 320                                                                  | 160        | >5120     | 640       | 640       | 1280      | 1280      | 1280      | 1280    | 80    | MDCK,MDCK1   | 28/06/2012 |  |
| 24 | A/WAIKATO/3/2012         | 640       | 320                                                                  | 320        | 320       | 640       | 640       | 1280      | 1280      | 1280      | 2560    | 160   | SIAT, MDCK1  | 41088      |  |
| 25 | A/SINGAPORE/13/2012      | 160       | 80                                                                   | <40        | 640       | 320       | 160       | 320       | 320       | 640       | 2560    | 320   | MDCK0,MDCK1  | 13/06/2012 |  |
| 26 | A/SINGAPORE/9/2012       | 160       | 80                                                                   | <40        | 1280      | 320       | 160       | 320       | 160       | 640       | 1280    | 320   | MDCK0,MDCK2  | 07/06/2012 |  |
| 27 | A/SINGAPORE/11/2012      | 160       | 40                                                                   | <40        | 320       | 160       | 1280      | 1280      | 1280      | 640       | 640     | 160   | MDCK0,MDCK2  | 15/06/2012 |  |
| 28 | A/VICTORIA/523/2012      | 160       | 80                                                                   | 80         | 320       | 160       | 80        | 160       | 320       | 640       | 2560    | 160   | E5           | 41071      |  |

# TABLE 3.3 – (H1N1)pdm09 viruses

|    | Date: June 21, 2012       |           | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |           |            |            |           |           |           |           |           |           |              |            |  |
|----|---------------------------|-----------|----------------------------------------------------------------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|--|
|    | Turkey no. 85             |           |                                                                      |           |            | Referen    | ce Antise | ra        |           |           | •         |           |              |            |  |
|    | Sequenced                 | Α         | С                                                                    | D         | E          | F          | F         | G         | Н         | I         | J         | K         | L            |            |  |
|    |                           | F1656-14D | FS5                                                                  | F2260-13D | F1614-14D  | F2255-13D  | F1620-13D | F1686-13D | F1704-14D | F1860-13D | F1857-13D | F1903-13D | Passage      | Sample     |  |
|    |                           | E4        |                                                                      |           | C2,MDCK1   | C2,MDCK5   | MDCK4     | E2        | E2        | E3        | MDCK1     | E4        | Details      | Date       |  |
|    | Reference Antigens        | CAL/7     | AUCK/1                                                               | AUCK/1    | ILLINOIS/9 | ILLINOIS/9 | BAY/69    | BRIS/10   | CHCH/16   | PERTH/198 | VIC/918   | BRIS/70   |              |            |  |
| Α  | A/CALIFORNIA/7/2009       | 2560      | 320                                                                  | 2560      | 320        | 2560       | 640       | 1280      | 640       | 1280      | 2560      | 2560      | E5           |            |  |
| В  | A/AUCKLAND/1/2009         | 2560      | 640                                                                  | >5120     | 640        | 2560       | 1280      | 2560      | 1280      | 2560      | >5120     | 2560      | E4           |            |  |
| С  | A/ILLINOIS/9/2007         | 2560      | 640                                                                  | 2560      | 640        | >5120      | 640       | 1280      | 640       | 1280      | 2560      | 1280      | C2/MDCK2     |            |  |
| D  | A/BAYERN/69/2009          | <80       | 40                                                                   | 80        | <40        | <40        | 320       | 160       | 80        | 80        | <40       | 160       | MDCK7        |            |  |
| E  | A/BRISBANE/10/2010        | 640       | 160                                                                  | 640       | 160        | 640        | 640       | 1280      | 2560      | 640       | 640       | 640       | E2           |            |  |
| F  | A/CHRISTCHURCH/16/2010    | 2560      | 320                                                                  | 2560      | 320        | 1280       | 1280      | 5120      | 2560      | 1280      | 2560      | 2560      | E3           |            |  |
| G  | A/PERTH/198/2010          | 1280      | 160                                                                  | 2560      | 320        | 1280       | 640       | 640       | 640       | 1280      | 1280      | 1280      | E4           |            |  |
| н  | A/VICTORIA/918/2010       | 2560      | 320                                                                  | >5120     | 640        | 2560       | 640       | 1280      | 640       | 1280      | 2560      | 2560      | MDCK2        |            |  |
| 1  | A/BRISBANE/70/2011        | 2560      | 320                                                                  | >5120     | 640        | 2560       | 640       | 1280      | 1280      | 1280      | 2560      | 2560      | E4           |            |  |
|    | Test Antigens             |           |                                                                      |           |            |            |           |           |           |           |           |           |              |            |  |
| 1  | A/VICTORIA/514/2012       | 2560      | 320                                                                  | 2560      | 640        | 2560       | 640       | 1280      | 1280      | 1280      | 2560      | 2560      | MDCK2        | 28/05/2012 |  |
| 2  | ASONG KHLA/40/2012        | 1280      | 320                                                                  | 2560      | 640        | 2560       | 640       | 1280      | 1280      | 1280      | 2560      | 2560      | mdckx,mdck1  | 06/03/2012 |  |
| 3  | A/PERTH/42/2012           | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCKX, MDCK2 | 10/04/2012 |  |
| 4  | A/PERTH/47/2012           | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCKX, MDCK2 | 13/04/2012 |  |
| 5  | A/VICTORIA/4/2012         | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCK2        | 07/05/2012 |  |
| 6  | A/VICTORIA/6/2012         | 1280      | 320                                                                  | 2560      | 320        | 2560       | 320       | 640       | 1280      | 1280      | 2560      | 1280      | MDCK4        | 15/05/2012 |  |
| 7  | A/GOROKA/7/2011           | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 1280      | 1280      | 1280      | MDCK2        | 08/01/2011 |  |
| 8  | A/GOROKA/9/2011           | 1280      | 160                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCK2        | 08/02/2011 |  |
| 9  | A/GOROKA/14/2011          | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 1280      | 640       | 1280      | 1280      | MDCK2        | 08/04/2011 |  |
| 10 | A/GOROKA/16/2011          | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 1280      | 1280      | 1280      | 1280      | MDCK2        | 08/09/2011 |  |
| 11 | A/GOROKA/20/2011          | 1280      | 320                                                                  | 2560      | 320        | 1280       | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCK2        |            |  |
| 12 | A/SOUTH AUSTRALIA/42/2012 | 1280      | 320                                                                  | 2560      | 320        | 2560       | 320       | 640       | 640       | 1280      | 1280      | 1280      | MDCK2        | 31/05/2012 |  |
| 13 | A/PERTH/501/2012          | 640       | 160                                                                  | 2560      | 160        | 640        | 320       | 640       | 640       | 640       | 1280      | 1280      | MDCK2        | 02/03/2012 |  |
| 14 | A/PERTH/46/2012           | 320       | 80                                                                   | 320       | <40        | 40         | 640       | 160       | 320       | 320       | 160       | 320       | MDCKX, MDCK2 | 13/04/2012 |  |
| 15 | A/GOROKA/15/2011          | 320       | 160                                                                  | 1280      | 80         | 320        | 320       | 320       | 640       | 640       | 640       | 640       | MDCK2        | 08/05/2011 |  |

# TABLE 3.4 – (H1N1)pdm09 viruses

#### FIGURE 3.2 Phylogenetic relationships among influenza A(H1N1)pdm09 HA genes



#### FIGURE 3.3 Phylogenetic relationships among influenza A(H1N1)pdm09 N1 neuraminidase genes



| TABLE 3.7                                     |       |
|-----------------------------------------------|-------|
| Haemagglutination inhibition antibody titres  |       |
| Influenza type A(H1N1)pdm09 viruses – Young A | dults |

|            | Antigon              | Don   | N  | Decesso History | % Dico | GI   | ИT    | %>/  | /=40 | %>/: | =160 |
|------------|----------------------|-------|----|-----------------|--------|------|-------|------|------|------|------|
|            | Antigen              | Рор   | IN | Fassage history | % RISE | Pre  | Post  | Pre  | Post | Pre  | Post |
|            |                      | Aus   | 20 | E5              | 60.0   | 20.0 | 117.1 | 45.0 | 95.0 | 15.0 | 65.0 |
| A(H1N1)pdm | A/California/7/2009* | Japan | 30 | E5              | 33.3   | 11.0 | 24.1  | 20.0 | 56.7 | 6.7  | 13.3 |
|            |                      | Eur   | 24 | E5              | 75.0   | 11.9 | 151.0 | 16.7 | 87.5 | 12.5 | 66.7 |
|            |                      | Aus   | 20 | E4              | 60.0   | 12.3 | 52.8  | 30.0 | 80.0 | 5.0  | 15.0 |
| A(H1N1)pdm | A/Victoria/537/2012  | Japan | 30 | E4              | 6.8    | 6.8  | 11.2  | 6.7  | 20.0 | 0.0  | 0.0  |
|            |                      | Eur   | 24 | E4              | 50.0   | 6.6  | 40.0  | 8.3  | 58.3 | 0.0  | 37.5 |
|            |                      | Aus   | 20 | MDCK2/MDCK3     | 60.0   | 10.4 | 42.9  | 30.0 | 80.0 | 0.0  | 10.0 |
| A(H1N1)pdm | A/Norway/418/2012    | Japan | 30 | MDCK2/MDCK3     | 23.3   | 7.2  | 13.2  | 6.7  | 20.0 | 0.0  | 0.0  |
|            |                      | Eur   | 24 | MDCK2/MDCK3     | 75.0   | 6.3  | 46.2  | 4.2  | 58.3 | 0.0  | 33.3 |

\*Vaccine strain

# TABLE 3.8Haemagglutination inhibition antibody titresInfluenza type A(H1N1)pdm09 viruses – Older Adults

|            | Antigon              | Don   | NI | Doogogo History | % Dico | GI  | ЛТ   | %>/  | /=40 | %>/=160 |      |
|------------|----------------------|-------|----|-----------------|--------|-----|------|------|------|---------|------|
|            | Antigen              | Рор   | IN | Passage history | % RISE | Pre | Post | Pre  | Post | Pre     | Post |
|            |                      | Aus   | 20 | E5              | 40.0   | 8.1 | 34.8 | 5.0  | 50.0 | 0.0     | 20.0 |
| A(H1N1)pdm | A/California/7/2009* | Japan | 30 | E5              | 30.0   | 9.1 | 18.2 | 16.7 | 33.3 | 0.0     | 16.7 |
|            |                      | Eur   | 24 | E5              | 62.5   | 9.2 | 47.6 | 12.5 | 66.7 | 8.3     | 33.3 |
|            |                      | Aus   | 20 | E4              | 40.0   | 5.5 | 18.7 | 0.0  | 35.0 | 0.0     | 20.0 |
| A(H1N1)pdm | A/Victoria/537/2012  | Japan | 30 | E4              | 16.7   | 7.9 | 12.3 | 13.3 | 23.3 | 0.0     | 6.7  |
|            |                      | Eur   | 24 | E4              | 50.0   | 7.9 | 29.6 | 12.5 | 45.8 | 8.3     | 25.0 |
|            |                      | Aus   | 20 | MDCK2/MDCK3     | 35.0   | 7.6 | 20.7 | 0.0  | 40.0 | 0.0     | 15.0 |
| A(H1N1)pdm | A/Norway/418/2012    | Japan | 30 | MDCK2/MDCK3     | 30.0   | 8.7 | 16.6 | 13.3 | 30.0 | 0.0     | 10.0 |
|            |                      | Eur   | 24 | MDCK2/MDCK3     | 41.7   | 6.9 | 24.5 | 8.3  | 37.5 | 0.0     | 25.0 |

\*Vaccine strain

APPENDIX 4 - Influenza A (H3N2)

|    | Date: August 30, 2012                     |               | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |               |               |               |               |               |               |               |               |               |               |              |            |
|----|-------------------------------------------|---------------|----------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|------------|
|    | Part A, B, C, D                           |               |                                                                      |               |               | Refer         | ence An       | tisera        |               |               |               |               |               |              |            |
|    | Sequenced                                 | Α             | В                                                                    | С             | D             | E             | F             | F             | G             | н             | I             | J             |               |              |            |
|    | Guinea Pig RBC's                          | F1886-<br>13D | F2243-<br>13D                                                        | F2182-<br>13D | F2180-<br>13D | F1756-<br>13D | F1887-<br>13D | F2018-15D     | F2178-<br>13D | F2179-<br>13D | F2202-<br>14D | F2240-<br>14D |               | Passage      | Sample     |
|    |                                           | E4            | MDCK                                                                 | E4            | E3            | MDCK          | MDCK6         | MDCK3         | E5            | MDCK          | E3            | MDCK2         | Mab           | History      | Date       |
|    | Phylogenetic clade                        | 1             | 1                                                                    | -             | 5             | 5             | 5             | 3C            | 6             | 6             | 3C            | 3C            |               |              |            |
|    | Reference Antigens                        | PERTH/16      | PERTH/16                                                             | VIC/208       | PERTH/10      | PERTH/10      | T'VILLE<br>87 | STH AUST<br>3 | BRIS/299      | BRIS/299      | VIC/361       | VIC/361       | 189           |              |            |
| Α  | A/PERTH/16/2009                           | 640           | 320                                                                  | 160           | 160           | 320           | 160           | 640           | 320           | 160           | 20            | 160           | >10240        | E7           |            |
| В  | A/PERTH/16/2009                           | 1280          | >2560                                                                | 320           | 320           | 640           | 640           | 1280          | 640           | 320           | 160           | 640           | 5120          | MDCKX, MDCK2 |            |
| C  | A/VICTORIA/208/2009                       | 1280          | >2560                                                                | 2560          | >2560         | >2560         | >2560         | >2560         | >2560         | >2560         | >2560         | 1280          | >10240        | E4           |            |
|    | A/PERTH/10/2010                           | 160           | 80                                                                   | 160           | 160           | 040<br>220    | 320           | 040<br>220    | 320           | 160           | 80            | 160           | 2000          |              |            |
| F  | A/FERTH/10/2010<br>A/TOW/NSV/ILLE/87/2010 | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 220           | <00           |              |            |
| G  |                                           | 320           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 320           | <00           | MDCK4        |            |
| н  | A/BRISBANE/299/2011                       | 320           | 160                                                                  | 160           | 320           | 1280          | 640           | 1280          | 1280          | 320           | 80            | 320           | <u>\10240</u> | E5           |            |
|    | A/BRISBANE/299/2011                       | 160           | 80                                                                   | 80            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | <80           | MDCK4        |            |
| J  | A/VICTORIA/361/2011                       | 80            | 160                                                                  | 320           | 80            | 640           | 320           | 640           | 160           | 320           | >2560         | 160           | 5120          | E3           |            |
| ĸ  | A/VICTORIA/361/2011                       | 160           | 80                                                                   | 80            | 80            | 320           | 320           | 160           | 320           | 160           | 80            | 160           | <80           | MDCK3        |            |
|    | Test Antigens                             |               |                                                                      |               |               |               |               |               |               |               |               |               |               |              |            |
| 1  | A/SYDNEY/99/2012                          | 640           | 640                                                                  | 320           | 640           | 1280          | 1280          | >2560         | 640           | 640           | 320           | 640           | 2560          | MDCK,MDCK1   | 08/06/2012 |
| 2  | A/PHILIPPINES/22/2012                     | 320           | 320                                                                  | 160           | 160           | 320           | 640           | 1280          | 640           | 320           | 320           | 640           | 80            | MDCK2        | 19/07/2012 |
| 3  | A/SOUTH AUCKLAND/18/2012                  | 320           | 320                                                                  | 160           | 160           | 640           | 640           | 1280          | 320           | 320           | 320           | 640           | 320           | SIAT,MDCK1   | 21/06/2012 |
| 4  | A/VICTORIA/686/2012                       | 640           | 640                                                                  | 320           | 320           | 640           | 1280          | 1280          | 640           | 320           | 320           | 640           | 640           | MDCK2        | 28/07/2012 |
| 5  | A/WELLINGTON/33/2012                      | 320           | 320                                                                  | 160           | 160           | 320           | 640           | 1280          | 640           | 320           | 160           | 640           | 2560          | SIAT,MDCK1   | 16/07/2012 |
| 6  | A/SYDNEY/95/2012                          | 320           | 320                                                                  | 160           | 160           | 640           | 640           | 1280          | 320           | 320           | 160           | 320           | 2560          | MDCK,MDCK1   | 04/06/2012 |
| 7  | A/SYDNEY/102/2012                         | 320           | 640                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 320           | 160           | 320           | 2560          | MDCK,MDCK1   | 12/06/2012 |
| 8  | A/SOUTH AUSTRALIA/143/2012                | 160           | 320                                                                  | 80            | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 320           | 2560          | MDCK1        | 16/08/2012 |
| 9  | A/PHILIPPINES/27/2012                     | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 320           | 160           | 320           | 640           | MDCK2        | 24/07/2012 |
| 10 | A/WELLINGTON/17/2012                      | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 320           | 320           | 160           | 160           | 320           | <80           | SIAT,MDCK1   | 02/07/2012 |
| 11 | A/CHRISTCHURCH/22/2012                    | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 320           | 160           | 320           | 640           | SIAT,MDCK1   | 01/07/2012 |
| 12 | A/VICTORIA/721/2012                       | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 320           | 80            | MDCK2        | 07/08/2012 |
| 13 | A/CAMBODIA/20/2012                        | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 320           | 160           | MDCK1        | 30/06/2012 |
| 14 | A/TASMANIA/59/2012                        | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 320           | 160           | 320           | 80            | MDCK2        | 17/07/2012 |
| 15 | A/PERTH/119/2012                          | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 320           | 320           | 160           | 160           | 320           | 80            | MDCK2        | 26/06/2012 |
| 10 |                                           | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 320           | 80            | MDCK1        | 30/07/2012 |
| 18 | Δ/PERTH/91/2012                           | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 20            | 320           | 160           | 80            | 320           | 80            |              | 12/06/2012 |
| 10 | A///ICTORIA/692/2012                      | 320           | 320                                                                  | 160           | 160           | 320           | 320           | 320           | 320           | 320           | 80            | 320           | 80            | MDCK2        | 01/08/2012 |
| 20 | A/WELLINGTON/30/2012                      | 160           | 160                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 160           | 2560          | MDCK MDCK1   | 10/07/2012 |
| 21 | A/SYDNEY/96/2012                          | 160           | 160                                                                  | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 160           | 640           | MDCK.MDCK1   | 05/06/2012 |
| 22 | A/SOUTH AUSTRALIA/130/2012                | 160           | 160                                                                  | 80            | 160           | 640           | 320           | 640           | 320           | 160           | 160           | 160           | 2560          | MDCK1        | 20/08/2012 |
| 23 | A/VICTORIA/683/2012                       | 160           | 160                                                                  | 160           | 160           | 320           | 320           | 320           | 320           | 160           | 160           | 160           | 80            | MDCK2        | 28/07/2012 |
| 24 | A/CHRISTCHURCH/24/2012                    | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 640           | 320           | 160           | 80            | 160           | 640           | SIAT,MDCK1   | 02/07/2012 |
| 25 | A/WELLINGTON/24/2012                      | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 160           | SIAT,MDCK1   | 06/07/2012 |
| 26 | A/WELLINGTON/26/2012                      | 160           | 160                                                                  | 80            | 160           | 160           | 320           | 160           | 160           | 160           | 80            | 160           | 640           | SIAT, MDCK1  | 09/07/2012 |
| 27 | A/SYDNEY/211/2012                         | 160           | 80                                                                   | 80            | 80            | 320           | 320           | 320           | 160           | 160           | 80            | 160           | 1280          | MDCK,MDCK1   | 06/06/2012 |
| 28 | A/PHILIPPINES/18/2012                     | 160           | 80                                                                   | 40            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | 80            | MDCK2        | 31/07/2012 |
| 29 | A/PHILIPPINES/23/2012                     | 80            | 80                                                                   | 40            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | <80           | MDCK2        | 31/07/2012 |
| 30 | A/PHILIPPINES/25/2012                     | 80            | 80                                                                   | 80            | 80            | 160           | 160           | 320           | 160           | 160           | 80            | 160           | 80            | MDCK2        | 31/07/2012 |
| 31 | A/VICTORIA/720/2012                       | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 80            | MDCK2        | 07/08/2012 |
| 32 | A/SOUTH AUCKLAND/16/2012                  | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | <80           | MDCK,MDCK1   | 16/06/2012 |
| 33 | A/CHRISTCHURCH/23/2012                    | 160           | 160                                                                  | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 640           | SIAT, MDCK1  | 01/07/2012 |
| 34 | A/PERTH/229/2012                          | 80            | 80                                                                   | 80            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | 640           | MDCK1        | 08/08/2012 |
| 35 | A/CAMBODIA/21/2012                        | 160           | 160                                                                  | 80            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | 320           | MDCK1        | 10/07/2012 |
| 30 |                                           | 160           | 160                                                                  | 80            | 80            | 160           | 160           | 160           | 160           | 160           | 80            | 160           | 80            | MDCK1        | 20/06/2012 |
| 37 | A/VICTORIA/134/2012                       | 160           | 160                                                                  | 160           | 160           | 320           | 320           | 320           | 320           | 320           | 80<br>80      | 160           | 80            | MDCK2        | 23/07/2012 |

## TABLE 4.2 – A(H3) viruses

|    | Date: August 28, 2012    | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |               |               |               |               |               |               |               |               |               |               |           |              |            |
|----|--------------------------|----------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|--------------|------------|
|    | Part A & B               |                                                                      |               |               |               | Refer         | ence An       | tisera        |               |               |               |               |           |              |            |
|    | Sequenced                | Α                                                                    | В             | С             | D             | E             | F             | F             | G             | н             | I             | J             |           |              |            |
|    | Guinea Pig RBC's # 2     | F1886-<br>13D                                                        | F2243-<br>13D | F2182-<br>13D | F2180-<br>13D | F1756-<br>13D | F1887-<br>13D | F2018-15D     | F2178-<br>13D | F2179-<br>13D | F2202-<br>14D | F2240-<br>14D |           | Passage      | Sample     |
|    |                          | E4                                                                   | MDCK          | E4            | E3            | MDCK          | MDCK6         | MDCK3         | E5            | MDCK          | E3            | MDCK2         | Mab       | History      | Date       |
|    | Phylogenetic clade       | 1                                                                    | 1             | -             | 5             | 5             | 5             | 3C            | 6             | 6             | 3C            | 3C            |           |              |            |
|    | Reference Antigens       | PERTH/16                                                             | PERTH/16      | VIC/208       | PERTH/10      | PERTH/10      | T'VILLE<br>87 | STH AUST<br>3 | BRIS/299      | BRIS/299      | VIC/361       | VIC/361       | 189       |              |            |
| Α  | A/PERTH/16/2009          | 640                                                                  | 320           | 160           | 160           | 320           | 160           | 640           | 320           | 160           | 40            | 160           | >10240    | E4           |            |
| В  | A/PERTH/16/2009          | 1280                                                                 | 1280          | 160           | 320           | 640           | 640           | 640           | 640           | 320           | 160           | 640           | 5120      | MDCKX, MDCK3 |            |
| С  | A/VICTORIA/208/2009      | 1280                                                                 | 1280          | >2560         | >2560         | >2560         | >2560         | >2560         | >2560         | >2560         | >2560         | 1280          | >10240    | E4           |            |
| D  | A/PERTH/10/2010          | 160                                                                  | 80            | 160           | 160           | 640           | 320           | 640           | 320           | 160           | 80            | 160           | 5120      | E5           |            |
| Е  | A/PERTH/10/2010          | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 80        | MDCKX, MDCK3 |            |
| F  | A/TOWNSVILLE/87/2010     | 160                                                                  | 160           | 80            | 160           | 320           | 320           | 320           | 320           | 320           | 160           | 160           | 80        | MDCK7        |            |
| G  | A/SOUTH AUSTRALIA/3/2011 | 320                                                                  | 160           | 80            | 160           | 320           | 320           | 320           | 320           | 160           | 160           | 320           | <80       | MDCK3        |            |
| Н  | A/BRISBANE/299/2011      | 640                                                                  | 160           | 320           | 320           | >2560         | 1280          | >2560         | >2560         | 640           | 160           | 640           | >10240    | E5           |            |
| 1  | A/BRISBANE/299/2011      | 320                                                                  | 320           | 160           | 160           | 320           | 320           | 320           | 320           | 320           | 160           | 320           | 80        | MDCK5        |            |
| J  | A/VICTORIA/361/2011      | 160                                                                  | 160           | 320           | 160           | 640           | 320           | 640           | 160           | 320           | >2560         | 160           | >10240    | E3           |            |
| Κ  | A/VICTORIA/361/2011      | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 320           | <80       | MDCK3        |            |
|    | Test Antigens            |                                                                      |               |               |               |               |               |               |               |               |               |               |           |              |            |
| 1  | A/CHRISTCHURCH/25/2012   | 1280                                                                 | 640           | 320           | 320           | 1280          | 1280          | >2560         | 1280          | 640           | 640           | 1280          | >10240    | SIAT, MDCK1  | 25/07/2012 |
| 2  | A/SYDNEY/207/2012        | 640                                                                  | 320           | 320           | 320           | 1280          | 1280          | 1280          | 640           | 640           | 320           | 640           | >10240    | MDCK,MDCK1   | 17/06/2012 |
| 3  | A/SYDNEY/208/2012        | 640                                                                  | 640           | 320           | 320           | >2560         | 1280          | >2560         | 640           | 640           | 320           | 640           | 5120      | MDCK,MDCK1   | 17/06/2012 |
| 4  | A/NEWCASTLE/57/2012      | 320                                                                  | 320           | 160           | 160           | 320           | 320           | 1280          | 640           | 320           | 160           | 640           | 5120      | MDCK1        | 13/07/2012 |
| 5  | A/CAMBODIA/29/2012       | 640                                                                  | 320           | 160           | 160           | 640           | 640           | 1280          | 320           | 320           | 160           | 640           | 5120      | MDCK2        | 27/06/2012 |
| 6  | A/CAMBODIA/33/2012       | 640                                                                  | 640           | 320           | 320           | 640           | 640           | 1280          | 640           | 320           | 160           | 640           | 5120      | MDCK2        | 28/06/2012 |
| 7  | A/CHRISTCHURCH/17/2012   | 320                                                                  | 320           | 160           | 160           | 320           | 640           | 640           | 320           | 320           | 160           | 640           | 640       | SIAT, MDCK1  | 29/06/2012 |
| 8  | A/WELLINGTON/36/2012     | 320                                                                  | 320           | 160           | 160           | 320           | 640           | 1280          | 640           | 160           | 160           | 640           | 80        | SIAT, MDCK1  | 16/07/2012 |
| 9  | A/VICTORIA/858/2012      | 640                                                                  | 640           | 320           | 320           | 1280          | 1280          | >2560         | 640           | 640           | 320           | 640           | 2560      | MDCK1        | 09/08/2012 |
| 10 | A/VICTORIA/866/2012      | 320                                                                  | 320           | 320           | 320           | 640           | 640           | 1280          | 640           | 320           | 320           | 640           | 2560      | MDCK1        | 13/08/2012 |
| 11 | A/SYDNEY/110/2012        | 320                                                                  | 320           | 160           | 320           | 640           | 640           | 1280          | 320           | 320           | 160           | 320           | 5120      | MDCK,MDCK1   | 12/06/2012 |
| 12 | A/CAMBODIA/30/2012       | 320                                                                  | 160           | 160           | 160           | 640           | 640           | 640           | 320           | 320           | 160           | 320           | 5120      | MDCK2        | 27/06/2012 |
| 13 | A/CAMBODIA/34/2012       | 320                                                                  | 320           | 160           | 160           | 640           | 320           | 640           | 320           | 320           | 80            | 320           | 5120      | MDCK2        | 28/06/2012 |
| 14 | A/WELLINGTON/22/2012     | 160                                                                  | 160           | 160           | 160           | 640           | 640           | 640           | 320           | 320           | 160           | 320           | 2560      | SIAT.MDCK1   | 04/07/2012 |
| 15 | A/CAMBODIA/17/2012       | 160                                                                  | 160           | 80            | 160           | 320           | 320           | 640           | 320           | 320           | 80            | 320           | 5120      | MDCK2        | 22/06/2012 |
| 16 | A/WELLINGTON/18/2012     | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 640           | 320           | 320           | 80            | 320           | 1280      | SIAT.MDCK1   | 04/07/2012 |
| 17 | A/WELLINGTON/19/2012     | 320                                                                  | 160           | 160           | 160           | 640           | 640           | 1280          | 320           | 320           | 160           | 320           | 2560      | SIAT,MDCK1   | 02/07/2012 |
| 18 | A/WELLINGTON/41/2012     | 160                                                                  | 320           | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 80            | 320           | 320       | SIAT.MDCK1   | 23/07/2012 |
| 19 | A/CHRISTCHURCH/26/2012   | 320                                                                  | 320           | 160           | 160           | 640           | 640           | 1280          | 320           | 320           | 160           | 320           | 2560      | SIAT,MDCK1   | 25/07/2012 |
| 20 | A/VICTORIA/867/2012      | 320                                                                  | 320           | 160           | 160           | 320           | 640           | 1280          | 640           | 320           | 160           | 320           | <80       | MDCK1        | 14/08/2012 |
| 21 | A/VICTORIA/869/2012      | 320                                                                  | 160           | 80            | 160           | 320           | 320           | 640           | 320           | 320           | 80            | 320           | 2560      | MDCK1        | 16/08/2012 |
| 22 | A/VICTORIA/873/2012      | 320                                                                  | 320           | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 160           | 320           | 80        | MDCK1        | 16/08/2012 |
| 23 | A/SYDNEY/205/2012        | 80                                                                   | 80            | 40            | 80            | 160           | 160           | 160           | 160           | 160           | 40            | 160           | 1280      | MDCK.MDCK1   | 28/05/2012 |
| 24 | A/SYDNEY/107/2012        | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 160           | 160           | 80            | 160           | 2560      | MDCK,MDCK1   | 08/06/2012 |
| 25 | A/SYDNEY/229/2012        | 160                                                                  | 160           | 160           | 160           | 320           | 320           | 320           | 320           | 320           | 80            | 160           | 2560      | MDCK,MDCK1   | 20/07/2012 |
| 26 | A/SYDNEY/232/2012        | 160                                                                  | 160           | 160           | 160           | 320           | 320           | 640           | 320           | 320           | 160           | 160           | 1280      | MDCK.MDCK1   | 16/07/2012 |
| 27 | A/SYDNEY/233/2012        | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 160           | 160           | 80            | 160           | 1280      | MDCK.MDCK1   | 25/07/2012 |
| 28 | A/CAMBODIA/31/2012       | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 2560      | MDCK2        | 27/06/2012 |
| 29 | A/WFLLINGTON/12/2012     | 160                                                                  | 160           | 80            | 80            | 320           | 320           | 320           | 160           | 160           | 80            | 160           | 160       | SIAT MDCK1   | 25/06/2012 |
| 30 | A/CHRISTCHURCH/12/2012   | 160                                                                  | 160           | 80            | 160           | 320           | 320           | 320           | 160           | 160           | 80            | 160           | 160       | SIAT MDCK1   | 29/06/2012 |
| 31 | A/WFLLINGTON/21/2012     | 160                                                                  | 160           | 80            | 160           | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 1280      | SIAT MDCK1   | 02/07/2012 |
| 32 | A/CAMBODIA/24/2012       | 160                                                                  | 160           | 160           | 160           | 640           | 640           | 640           | 320           | 320           | 80            | 160           | 5120      | MDCK2        | 06/06/2012 |
| 32 | A/CAMBODIA/25/2012       | 160                                                                  | 160           | 160           | 160           | 320           | 320           | 640           | 320           | 160           | 80            | 160           | 5120      | MDCK2        | 13/06/2012 |
| 34 |                          | 160                                                                  | 80            | 80            | 80            | 160           | 160           | 160           | J20<br>160    | 160           | 80            | 160           | 90        |              | 17/07/2012 |
| 25 |                          | 160                                                                  | 00            | 00            | 00            | 160           | 160           | 160           | 160           | 160           | 00            | 160           | 00<br>200 |              | 24/07/2012 |
| 36 |                          | 160                                                                  | 160           | 80            | 160           | 320           | 320           | 320           | 320           | 160           | 80            | 160           | 5120      |              | 25/07/2012 |
| 30 |                          | 100                                                                  | 100           | 00            | 001           | 320           | 320           | 320           | 320           | 001           | 00            | 160           | 5120      |              | 25/07/2012 |
| 3/ | A/URKISIURUKUH/28/2012   | 320                                                                  | 001           | 100           | ōU            | 320           | 320           | 040           | 320           | 320           | ōU            | 160           | 5120      | SIAT, WIDCKT | 25/07/2012 |

## TABLE 4.3 – A(H3) viruses

|   | August 23, 2012      |         | Plaque   | Centre, Melbourne |           |          |             |            |
|---|----------------------|---------|----------|-------------------|-----------|----------|-------------|------------|
|   | Assay tested by: Rob |         |          |                   | Reference | Antisera |             |            |
|   | Data entered by: Rob | 1       | 2        | 3                 | 4         | 5        |             |            |
|   |                      | F1466-  | F1886-   | F2182-            | F2202-    | F2240-   |             |            |
|   |                      | 14D     | 13D      | 13D               | 14D       | 14D      | Passage     | Sample     |
|   |                      |         | E4       | E4                | E3        | MDCK2    | History     | Date       |
|   | Reference Antigens   | Bris/10 | PERTH/16 | VIC/208           | VIC/361   | VIC/361  |             |            |
| 1 | A/BRISBANE/10/2007   | 1280    | 640      | 640               | 640       | 640      | E5          |            |
| 2 | A/PERTH/16/2009      | 640     | 1280     | 2560              | 1280      | 640      | E7          |            |
| 3 | A/VICTORIA/208/2009  | 160     | 640      | 1280              | 640       | 640      | E4          |            |
| 4 | A/VICTORIA/361/2011  | 640     | 1280     | 1280              | 2560      | 1280     | E3          |            |
| 5 | A/VICTORIA/361/2011  | 320     | 1280     | 2560              | 1280      | 1280     | MDCK3       |            |
|   | Test Ag              |         |          |                   |           |          |             |            |
|   | A/VICTORIA/92/2012   | 320     | 1280     | 2560              | 2560      | 2560     | MDCKX,MDCK1 | 12/07/2012 |
|   | A/VICTORIA/131/2012  | 320     | 640      | 1280              | 1280      | 1280     | MDCKX,MDCK1 | 19/07/2012 |
|   | A/VICTORIA/130/2012  | 640     | 1280     | 2560              | 2560      | 1280     | MDCKX,MDCK1 | 19/07/2012 |
|   | A/MACAU/600142/2012  | 320     | 1280     | 2560              | 2560      | 1280     | MDCKX,MDCK1 | 01/03/2012 |
|   | A/MACAU/600193/2012  | 320     | 640      | 1280              | 640       | 640      | MDCKX,MDCK1 | 15/03/2012 |
|   | A/MACAU/200446/2012  | 320     | 640      | 1280              | 640       | 640      | MDCK1       | 15/03/2012 |
|   | A/MACAU/600628/2011  | 160     | 320      | 1280              | 320       | 320      | MDCK1       | 19/08/2011 |

# FIGURE 4.2 Phylogenetic relationships among influenza A(H3) HA genes



## FIGURE 4.3 Phylogenetic relationships among influenza N2 Neuraminidase genes



# TABLE 4.10Haemagglutination inhibition antibody titresInfluenza type A(H3N2) viruses – Young Adults

|      | Antigon               | Den   | NI | Decesso History | 0/ Dicc | GI   | МТ    | %>   | /=40  | %>/: | =160 |
|------|-----------------------|-------|----|-----------------|---------|------|-------|------|-------|------|------|
|      | Anugen                | Рор   | IN | Passage history | % RISE  | Pre  | Post  | Pre  | Post  | Pre  | Post |
|      |                       | Aus   | 20 | E5              | 70.0    | 16.2 | 98.5  | 40.0 | 95.0  | 0.0  | 40.0 |
| H3N2 | A/Perth/16/2009*      | Japan | 30 | E5              | 30.0    | 10.5 | 20.5  | 16.7 | 33.3  | 3.3  | 6.7  |
|      |                       | Eur   | 24 | E5              | 79.2    | 7.3  | 87.2  | 4.2  | 83.3  | 0.0  | 62.5 |
|      |                       | Aus   | 20 | MDCK3           | 45.0    | 11.5 | 26.4  | 10.0 | 50.0  | 0.0  | 0.0  |
| H3N2 | A/Victoria/361/2011   | Japan | 30 | MDCK3           | 6.7     | 13.5 | 17.4  | 20.0 | 26.7  | 0.0  | 0.0  |
|      |                       | Eur   | 24 | MDCK3           | 66.7    | 12.2 | 43.6  | 8.3  | 87.5  | 0.0  | 0.0  |
|      |                       | Aus   | 20 | E4              | 65.0    | 12.7 | 72.1  | 25.0 | 90.0  | 5.0  | 35.0 |
| H3N2 | A/Ohio/2/2012         | Japan | 30 | E4              | 16.7    | 8.5  | 13.5  | 16.7 | 26.7  | 3.3  | 3.3  |
|      |                       | Eur   | 24 | E4              | 66.7    | 5.1  | 43.6  | 0.0  | 62.5  | 0.0  | 33.3 |
|      |                       | Aus   | 20 | E3              | 55.0    | 21.4 | 98.5  | 35.0 | 90.0  | 10.0 | 50.0 |
| H3N2 | A/Victoria/361/2011** | Japan | 30 | E3              | 36.7    | 11.8 | 27.6  | 20.0 | 56.7  | 3.3  | 13.3 |
|      |                       | Eur   | 24 | E3              | 100.0   | 10.6 | 160.0 | 20.8 | 100.0 | 4.2  | 62.5 |
|      |                       | Aus   | 20 | MDCK3           | 10.0    | 28.3 | 45.9  | 50.0 | 85.0  | 5.0  | 5.0  |
| H3N2 | A/Victoria/527/2012   | Japan | 30 | MDCK3           | 0.0     | 19.1 | 25.8  | 33.3 | 46.7  | 0.0  | 0.0  |
|      |                       | Eur   | 24 | MDCK3           | 50.0    | 18.9 | 56.6  | 41.7 | 95.8  | 0.0  | 4.2  |

\*Vaccine strain

#### TABLE 4.11 ation inhibition ontibody tit

# Haemagglutination inhibition antibody titres Influenza type A(H3N2) viruses – Older Adults

|      | Antigon               | Don   | NI | Decesso History | 0/ Diac | GI   | ИT    | %>/=40 |      | %>/=160 |      |
|------|-----------------------|-------|----|-----------------|---------|------|-------|--------|------|---------|------|
|      | Antigen               | Рор   | IN | Passage history | % RISE  | Pre  | Post  | Pre    | Post | Pre     | Post |
|      |                       | Aus   | 20 | E5              | 65.0    | 13.7 | 95.1  | 35.0   | 85.0 | 5.0     | 35.0 |
| H3N2 | A/Perth/16/2009*      | Japan | 30 | E5              | 36.7    | 10.7 | 26.4  | 13.3   | 50.0 | 0.0     | 6.7  |
|      |                       | Eur   | 24 | E5              | 62.5    | 11.9 | 71.3  | 20.8   | 66.7 | 12.5    | 45.8 |
|      |                       | Aus   | 20 | MDCK3           | 30.0    | 13.2 | 27.3  | 15.0   | 55.0 | 0.0     | 0.0  |
| H3N2 | A/Victoria/361/2011   | Japan | 30 | MDCK3           | 10.0    | 10.7 | 15.5  | 3.3    | 23.3 | 0.0     | 0.0  |
|      |                       | Eur   | 24 | MDCK3           | 58.3    | 13.7 | 38.9  | 16.7   | 70.8 | 0.0     | 8.3  |
|      |                       | Aus   | 20 | E4              | 65.0    | 8.4  | 54.6  | 15.0   | 75.0 | 0.0     | 15.0 |
| H3N2 | A/Ohio/2/2012         | Japan | 30 | E4              | 26.7    | 6.9  | 13.8  | 6.7    | 26.7 | 0.0     | 6.7  |
|      |                       | Eur   | 24 | E4              | 47.8    | 9.2  | 40.0  | 17.4   | 60.9 | 4.3     | 26.1 |
|      |                       | Aus   | 20 | E3              | 50.0    | 12.3 | 56.6  | 20.0   | 75.0 | 5.0     | 30.0 |
| H3N2 | A/Victoria/361/2011** | Japan | 30 | E3              | 26.7    | 9.8  | 19.5  | 13.3   | 30.0 | 0.0     | 6.7  |
|      |                       | Eur   | 24 | E3              | 70.8    | 16.8 | 106.8 | 29.2   | 95.8 | 8.3     | 37.5 |
|      |                       | Aus   | 20 | MDCK3           | 10.0    | 31.4 | 44.4  | 55.0   | 80.0 | 0.0     | 0.0  |
| H3N2 | A/Victoria/527/2012   | Japan | 30 | MDCK3           | 6.7     | 15.5 | 20.9  | 23.3   | 33.3 | 0.0     | 0.0  |
|      |                       | Eur   | 24 | MDCK3           | 45.8    | 21.8 | 56.6  | 45.8   | 87.5 | 0.0     | 12.5 |

\*Vaccine strain for Aus/Japan \*\*Vaccine strain for Eur

**APPENDIX 5 - Influenza B** 

TABLE 5.2 – B viruses (B/Victoria lineage)

| Date: August 7, 2012 Part A & B |                           |          | Haema     | gglutinatio | on Inhibit | ion Assay – W | HO Influe | nza Centr | e, Melbou  | ırne Refe | rence An | tisera |        |              |            |
|---------------------------------|---------------------------|----------|-----------|-------------|------------|---------------|-----------|-----------|------------|-----------|----------|--------|--------|--------------|------------|
|                                 | Sequenced                 | Α        | В         | С           | D          | E             | F         | G         | Н          | 1         | J        | K      |        |              |            |
|                                 | Turkey number 72          | F1175-   | F1640-    | F1901-      | F1904-     | E4000 40D     | F1236-    | F1880-    | F1364-     | F1900-    | F2314-   | F2315- | F1687- |              |            |
|                                 | Turkey humber 72          | 21D      | 21D       | 21D         | 21D        | F1233-19D     | 21D       | 21D       | 21D        | 21D       | 21D      | 21D    | 21D    |              |            |
|                                 |                           | E4       | MDCK3     | MDCK        | E3         | MDCKX,MDCK1   | E4        | E3        | E3         | E2        | MDCK1    | MDCK1  | E4     | Passage      | Date       |
|                                 |                           | MAL/2506 | PHIL/6363 | SING/616    | CAMB/30    | BRIS/60       | BRIS/60   | BRIS/33   | HK/90      | SYD/508   | SA/11    | DAR/40 | WISC/1 | History      |            |
|                                 | Reference Antigens        |          |           |             |            |               |           |           |            |           |          |        |        |              |            |
| Α                               | B/MALAYSIA/2506/2004      | 1280     | 1280      | 1280        | 1280       | 20            | 320       | 640       | 320        | 640       | 40       | <20    | <20    | E5           |            |
| В                               | B/PHILIPPINES/6363/2009   | 320      | 640       | 320         | 320        | <20           | 80        | 160       | 160        | 160       | <20      | <20    | <20    | MDCK3        |            |
| С                               | B/SINGAPORE/616/2008      | 320      | 640       | 640         | 640        | <20           | 160       | 320       | 320        | 160       | <20      | <20    | <20    | MDCK5        |            |
| D                               | B/CAMBODIA/30/2011        | 640      | 1280      | 1280        | 1280       | 20            | 320       | 640       | 320        | 320       | 40       | 20     | <20    | E3           |            |
| Ε                               | B/BRISBANE/60/2008        | <20      | 160       | 20          | 40         | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCKX,MDCK4  |            |
| F                               | B/BRISBANE/60/2008        | 320      | 640       | 640         | 640        | 160           | 1280      | >2560     | 1280       | >2560     | 160      | 640    | <20    | E6           |            |
| G                               | B/BRISBANE/33/2008        | 320      | 1280      | 320         | 1280       | 160           | 1280      | >2560     | >2560      | >2560     | 320      | 640    | <20    | E4           |            |
| Н                               | B/HONG KONG/90/2008       | 320      | 640       | 640         | 640        | 160           | 1280      | 1280      | >2560      | 1280      | 160      | 320    | <20    | E5           |            |
|                                 | B/SYDNEY/508/2010         | 320      | 640       | 640         | 1280       | 160           | 1280      | 1280      | 1280       | >2560     | 160      | 640    | <20    | E2           |            |
| J                               | B/SOUTH AUSTRALIA/11/2012 | <20      | 80        | <20         | 40         | 160           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK2        |            |
| K                               | B/DARWIN/40/2012          | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK2        |            |
| L                               | B/WISCONSIN/1/2010        | 80       | 20        | <20         | 40         | <20           | 40        | <20       | 20         | 20        | <20      | <20    | 640    | E4           |            |
|                                 | Test antigens             |          | 4.5.5     |             |            | 0.67          |           |           | 0.5.5      |           | 06.7     |        |        | NBCIT        | 05/06/22   |
| 1                               | B/SOUTH AUSTRALIA/21/2012 | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 320        | 320       | 320      | 640    | <20    | MDCK1        | 25/06/2012 |
| 2                               | B/DARWIN/42/2012          | <20      | 160       | <20         | 40         | 160           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK1        | 27/06/2012 |
| 3                               | B/DARWIN/45/2012          | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | MDCK1        | 04/07/2012 |
| 4                               | B/DARWIN/46/2012          | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK1        | 04/07/2012 |
| 5                               | B/VICTORIA/806/2012       | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK1        | 04/07/2012 |
| 6                               | B/VICTORIA/314/2011       | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK1        | 06/07/2012 |
| 7                               | B/ALICE SPRINGS/11/2012   | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 640        | 320       | 320      | 1280   | <20    | MDCK1        | 05/07/2012 |
| 8                               | B/SOUTH AUSTRALIA/22/2012 | <20      | 80        | <20         | 40         | 160           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | MDCK!        | 06/07/2012 |
| 9                               | B/CHRISTCHURCH/501/2012   | <20      | 160       | <20         | 20         | 320           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | mdck1        | 09/07/2012 |
| 10                              | B/CHRISTCHURCH/1/2012     | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 320       | 320      | 640    | <20    | MDCKX,MDCK1  | 15/06/2012 |
| 11                              | B/SOUTH AUCKLAND/1/2012   | <20      | 160       | <20         | 40         | 160           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCKX,MDCK1  | 09/03/2012 |
| 12                              | B/VICTORIA/316/2012       | <20      | 160       | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK1        | 17/07/2012 |
| 13                              | B/BRISBANE/32/2012        | <20      | 80        | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | mdck2        | 08/06/2012 |
| 14                              | B/TOWNSVILLE/20/2012      | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 320        | 320       | 320      | 1280   | <20    | mdck2        | 09/06/2012 |
| 15                              | B/BRISBANE/35/2012        | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 640        | 320       | 640      | 1280   | <20    | mdck2        | 11/06/2012 |
| 10                              | B/TOWNSVILLE/21/2012      | <20      | 80        | <20         | 20         | 320           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | mdck2        | 14/06/2012 |
| 1/                              |                           | <20      | 001       | <20         | 40         | 320           | 320       | 320       | 200        | 320       | 200      | 640    | <20    | mdck2        | 13/06/2012 |
| 10                              |                           | <20      | 80        | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 1290   | <20    | mdek2        | 06/06/2012 |
| 19                              |                           | <20      | 160       | <20         | 20         | 160           | 160       | 320       | 320        | 220       | 320      | 1200   | <20    | mdok2        | 14/06/2012 |
| 20                              |                           | <20      | 160       | <20         | 40         | 220           | 220       | 320       | 320        | 320       | 320      | 1200   | <20    | mdck2        | 14/00/2012 |
| 22                              | B/BRISBANE/30/2012        | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 520<br>640 | 320       | 640      | 1200   | <20    | mdck2        | 18/06/2012 |
| 22                              | B/TOW/NS\/II   E/27/2012  | <20      | 80        | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | mdck2        | 07/06/2012 |
| 20                              | B/SVDNEV/201/2012         | <20      | 160       | <20         | 40         | 160           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | mdeky mdek1  | 21/06/2012 |
| 25                              | B///ICTORIA/517/2012      | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 640        | 320       | 640      | 1280   | <20    | MDCK1        | 01/07/2012 |
| 26                              | B/BRISBANE/33/2012        | <20      | 80        | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | mdck2        | 07/06/2012 |
| 27                              | B/TOWNSVILLE/19/2012      | <20      | 160       | <20         | 40         | 320           | 320       | 320       | 320        | 320       | 640      | 1280   | <20    | mdck2        | 06/06/2012 |
| 28                              | B/BRISBANE/34/2012        | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 320       | 320      | 1280   | <20    | mdck2        | 09/06/2012 |
| 31                              | B/TASMANIA/4/2012         | <20      | 80        | <20         | 20         | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK1        | 09/07/2012 |
| 32                              | B/DARW/IN/48/2012         | <20      | 80        | <20         | 40         | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | mdck1        | 09/07/2012 |
| 33                              | B/V/ICTORIA/516/2012      | <20      | 160       | <20         | 40         | 320           | 160       | 320       | 320        | 160       | 320      | 1280   | <20    | MDCK1        | 27/06/2012 |
| 34                              | B/SINGAPORE/1/2012        | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK0 MDCK1  | 02/02/2012 |
| 35                              | B/SINGAPORE/2/2012        | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 160      | 320    | <20    | MDCK0 MDCK1  | 07/02/2012 |
| 36                              | B/SINGAPORE/12/2012       | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK0 MDCK1  | 13/06/2012 |
| 37                              | B/SINGAPORE/13/2012       | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK0 MDCK1  | 13/06/2012 |
| 38                              | B/SINGAPORE/18/2012       | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK0 MDCK1  | 23/02/2012 |
| 39                              | B/SINGAPORE/20/2012       | <20      | 80        | <20         | <20        | 160           | 160       | 320       | 320        | 160       | 320      | 640    | <20    | MDCK0, MDCK1 | 20/03/2012 |
| 40                              | B/MACAU/200200/2012       | <20      | 160       | <20         | 20         | 160           | 80        | 160       | 160        | 160       | 160      | 640    | <20    | MDCK,MDCK1   | 13/02/2012 |
| -                               |                           | -        |           | -           | -          |               |           |           |            |           |          |        | -      | , -          |            |

# TABLE 5.3 – B viruses (B/Victoria lineage)

|    | Date: August 16, 2012   | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |           |          |           |             |           |         |        |         |        |      |             |            |
|----|-------------------------|----------------------------------------------------------------------|-----------|----------|-----------|-------------|-----------|---------|--------|---------|--------|------|-------------|------------|
|    | Turkey no. 82           |                                                                      |           |          |           | Referen     | ce Antise | era     |        |         |        |      |             |            |
|    | Sequenced               | A B C D E F F G H I J                                                |           |          |           |             |           |         |        |         |        |      |             |            |
|    |                         | F1175- F1640- F1901-                                                 |           | F1904-   | E1233-10D | F1236-      | F1880-    | F1364-  | F1900- | F1687-  | Mab    |      |             |            |
|    |                         | 21D                                                                  | 21D       | 21D      | 21D       | 11233-130   | 21D       | 21D     | 21D    | 21D     | 21D    | 172  |             |            |
|    |                         | E4                                                                   | MDCK3     | MDCK     | E3        | MDCKX,MDCK1 | E4        | E3      | E3     | E2      | E4     |      | Passage     | Date       |
|    | Reference Antigens      | MAL/2506                                                             | PHIL/6363 | SING/616 | CAMB/30   | BRIS/60     | BRIS/60   | BRIS/33 | HK/90  | SYD/508 | WISC/1 |      | History     |            |
| Α  | B/MALAYSIA/2506/2004    | 1280                                                                 | 1280      | 1280     | 1280      | 20          | 320       | 640     | 640    | 640     | <20    | <80  | E5          |            |
| В  | B/PHILIPPINES/6363/2009 | 160                                                                  | 1280      | 160      | 320       | 20          | 80        | 160     | 160    | 160     | <20    | <80  | MDCK3       |            |
| С  | B/SINGAPORE/616/2008    | 320                                                                  | 640       | 640      | 640       | 20          | 320       | 320     | 320    | 320     | <20    | <80  | MDCK5       |            |
| D  | B/CAMBODIA/30/2011      | 640                                                                  | 1280      | 1280     | 1280      | 40          | 320       | 640     | 640    | 640     | <20    | <80  | E3          |            |
| E  | B/BRISBANE/60/2008      | 20                                                                   | 160       | <20      | 80        | 160         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCKX,MDCK4 |            |
| F  | B/BRISBANE/60/2008      | 320                                                                  | 640       | 320      | 640       | 160         | 1280      | 1280    | 1280   | 1280    | <20    | 1280 | E6          |            |
| G  | B/BRISBANE/33/2008      | 320                                                                  | 640       | 320      | 1280      | 160         | 1280      | >2560   | 1280   | >2560   | <20    | 1280 | E4          |            |
| н  | B/HONG KONG/90/2008     | 320                                                                  | 640       | 640      | 640       | 80          | 640       | 1280    | 1280   | 1280    | <20    | 1280 | E5          |            |
|    | B/SYDNEY/508/2010       | 160                                                                  | 640       | 320      | 1280      | 160         | 1280      | 1280    | 1280   | >2560   | <20    | 1280 | E2          |            |
| J  | B/WISCONSIN/1/2010      | 80                                                                   | <20       | <20      | 20        | <20         | <20       | <20     | 20     | <20     | 640    | <80  | E4          |            |
|    | Test Antigens           |                                                                      |           |          |           |             |           |         |        |         |        |      |             |            |
| 1  | B/CHRISTCHURCH/504/2012 | <20                                                                  | 160       | <20      | 40        | 640         | 320       | 640     | 640    | 320     | <20    | 2560 | MDCK1       | 23/07/2012 |
| 2  | B/SRI LANKA/3/2012      | <20                                                                  | 80        | <20      | 20        | 640         | 160       | 320     | 320    | 320     | <20    | 1280 | X,MDCK1     |            |
| 3  | B/SINGAPORE/19/2012     | <20                                                                  | 80        | <20      | <20       | 320         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCK2       | 28/03/2012 |
| 4  | B/PERTH/75/2012         | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 2560 | MDCKX,MDCK1 | 30/05/2012 |
| 5  | B/PERTH/79/2012         | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 2560 | MDCKX,MDCK1 | 03/06/2012 |
| 6  | B/PERTH/86/2012         | <20                                                                  | 160       | <20      | 40        | 320         | 320       | 320     | 640    | 320     | <20    | 2560 | MDCKX,MDCK1 | 07/06/2012 |
| 7  | B/PERTH/89/2012         | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 2560 | MDCKX,MDCK1 | 05/06/2012 |
| 8  | B/PERTH/113/2012        | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCKX,MDCK1 | 25/06/2012 |
| 9  | B/PERTH/116/2012        | <20                                                                  | 160       | <20      | <20       | 320         | 320       | 320     | 640    | 320     | <20    | 2560 | MDCKX,MDCK1 | 25/06/2012 |
| 10 | B/VICTORIA/523/2012     | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 2560 | MDCK1       | 17/07/2012 |
| 11 | B/PERTH/64/2012         | <20                                                                  | 80        | <20      | 40        | 320         | 320       | 320     | 320    | 320     | <20    | 1280 | MDCKX,MDCK1 | 09/05/2012 |
| 12 | B/PERTH/71/2012         | <20                                                                  | 160       | <20      | 20        | 320         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCKX,MDCK1 | 23/05/2012 |
| 13 | B/PERTH/72/2012         | <20                                                                  | 80        | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCKX,MDCK1 | 28/05/2012 |
| 14 | B/CHRISTCHURCH/502/2012 | <20                                                                  | 160       | <20      | 40        | 320         | 160       | 320     | 320    | 320     | <20    | 1280 | MDCK1       | 17/07/2012 |
| 15 | B/CHRISTCHURCH/503/2012 | <20                                                                  | 160       | <20      | 80        | 320         | 320       | 640     | 640    | 320     | <20    | 2560 | MDCK1       | 21/07/2012 |
| 16 | B/CHRISTCHURCH/506/2012 | <20                                                                  | 160       | <20      | 40        | 320         | 320       | 640     | 640    | 320     | <20    | 1280 | MDCK1       | 24/07/2012 |
| 17 | B/SRI LANKA/1/2012      | <20                                                                  | 160       | <20      | 40        | 320         | 320       | 640     | 640    | 320     | <20    | 1280 | X,MDCK1     |            |
| 18 | B/SRI LANKA/4/2012      | <20                                                                  | 160       | <20      | 20        | 320         | 160       | 320     | 640    | 320     | <20    | 1280 | X,MDCK1     |            |
| 19 | B/SINGAPORE/21/2012     | <20                                                                  | 80        | <20      | <20       | 160         | 160       | 320     | 320    | 320     | <20    | 640  | MDCK2       | 30/03/2012 |
| 20 | B/TASMANIA/3/2012       | <20                                                                  | 80        | <20      | <20       | 160         | 160       | 320     | 320    | 160     | <20    | 1280 | MDCK1       | 21/07/2012 |
| 21 | B/PERTH/69/2012         | <20                                                                  | 80        | <20      | <20       | 160         | 160       | 320     | 320    | 160     | <20    | 640  | MDCKX,MDCK1 | 15/05/2012 |
| 22 | B/PERTH/85/2012         | <20                                                                  | 80        | <20      | 40        | 160         | 160       | 320     | 320    | 320     | <20    | 640  | MDCKX,MDCK1 | 06/06/2012 |
| 23 | B/TASMANIA/6/2012       | <20                                                                  | 80        | <20      | <20       | 160         | 160       | 320     | 320    | 320     | <20    | 2560 | MDCK1       | 01/08/2012 |
| 24 | B/PERTH/76/2012         | <20                                                                  | 80        | <20      | 20        | 160         | 160       | 320     | 320    | 160     | <20    | 640  | MDCKX,MDCK1 | 31/05/2012 |
| 25 | B/SRI LANKA/2/2012      | <20                                                                  | 40        | <20      | <20       | 160         | <20       | 160     | 160    | 40      | <20    | <80  | X,MDCK1     |            |
| 26 | B/PERTH/58/2012         | 20                                                                   | 40        | 20       | <20       | <20         | <20       | <20     | 40     | 20      | <20    | <80  | MDCKX,MDCK1 | 03/05/2012 |

# TABLE 5.4 – B viruses (B/Yamagata lineage)

| Date: August 2, 2012 |                               | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne |          |             |           |           |               |               |               |            |             |               |            |              |            |
|----------------------|-------------------------------|----------------------------------------------------------------------|----------|-------------|-----------|-----------|---------------|---------------|---------------|------------|-------------|---------------|------------|--------------|------------|
|                      |                               |                                                                      |          |             |           |           | Referenc      | e Antise      | ra            |            |             |               |            |              |            |
|                      | Sequenced                     | Α                                                                    | В        | С           | D         | E         | F             | G             | Н             | 1          | J           | К             |            |              |            |
|                      | Turkey number 65              | F982-<br>21D                                                         | F997-21D | F1145-21D   | F1151-19D | F1323-19D | F1149-<br>19D | F1687-<br>21D | F1654-<br>21D | F2313-21D  | F2313-21D   | F1880-<br>21D | Mab<br>184 |              |            |
|                      |                               | E2                                                                   | E4       | mdckx,mdck1 | E5        | E3        | CELL          | E4            | E4            | MDCK1      | MDCKX,MDCK1 | E3            |            | Passage      | Date       |
|                      | Reference Antigens            | BRIS/3                                                               | FLORID/4 | STH AUST/5  | BANG/3333 | INDI/1    | BRIS/9        | WISC/1        | HBEI/158      | STH AUS/17 | MAL/412     | BRIS/33       | 1/40       | History      |            |
| Α                    | B/BRISBANE/3/2007             | 1280                                                                 | 1280     | 80          | 1280      | 640       | 1280          | 160           | 640           | 160        | 160         | <20           | 160        | E3           |            |
| В                    | B/FLORIDA/4/2006              | >2560                                                                | >2560    | 80          | 640       | 640       | >2560         | 160           | 1280          | 160        | 320         | <20           | 160        | E4           |            |
| С                    | B/SOUTH AUSTRALIA/5/2008      | 160                                                                  | 160      | 640         | 320       | 320       | 160           | 160           | 160           | 320        | 40          | <20           | 320        | MDCKX.MDCK2  |            |
| D                    | B/BANGLADESH/3333/2007        | 640                                                                  | 1280     | 320         | 1280      | 1280      | 640           | 320           | 640           | 320        | 20          | <20           | 320        | E6           |            |
| Е                    | B/INDIANA/1/2008              | 640                                                                  | 640      | 160         | 1280      | 640       | 640           | 320           | 320           | 160        | <20         | <20           | 160        | E3           |            |
| F                    | B/BRISBANE/9/2008             | 80                                                                   | 160      | 640         | 160       | 320       | 80            | 80            | 80            | 320        | 20          | <20           | 160        | MDCKX, MDCK4 |            |
| G                    | B/WISCONSIN/1/2010            | 640                                                                  | 640      | 320         | 640       | 320       | 640           | 320           | 640           | 320        | 20          | <20           | 160        | E4           |            |
| Н                    | B/HUBEI WUJIAGANG/158/2009    | 320                                                                  | 320      | 160         | 160       | 160       | 320           | 80            | 320           | 80         | <20         | <20           | 320        | E7           |            |
| 1                    | B/SOUTH AUSTRALIA/17/2012     | 80                                                                   | 80       | 320         | 160       | 160       | 80            | 80            | 80            | 320        | <20         | <20           | 160        | MDCK2        |            |
| J                    | B/MALAYSIA/412/2012           | 320                                                                  | 320      | 160         | 160       | 160       | 320           | 80            | 80            | 160        | 320         | <20           | 160        | MDCKX,MCDK2  |            |
| Κ                    | B/BRISBANE/33/2008 (Victoria) | <20                                                                  | <20      | <20         | <20       | <20       | <20           | <20           | <20           | <20        | <20         | 1280          | <40        | E4           |            |
|                      | Test Antigens                 |                                                                      |          |             |           |           |               |               |               |            |             |               |            |              |            |
| 1                    | B/WAIKATO/1/2012              | 320                                                                  | 320      | 320         | 160       | 320       | 640           | 160           | 160           | 320        | 320         | <20           | 80         | SIATX,MDCK1  | 23/05/2012 |
| 2                    | B/VICTORIA/3/2012             | 160                                                                  | 160      | 80          | 80        | 160       | 160           | 80            | 40            | 160        | 320         | <20           | 160        | MDCK1        | 20/06/2012 |
| 3                    | B/NEW CALEDONIA/2/2012        | 320                                                                  | 320      | 80          | 160       | 320       | 640           | 80            | 160           | 160        | 320         | <20           | 320        | MDCK1        | 19/06/2012 |
| 4                    | B/SOUTH AUCKLAND/4/2012       | 160                                                                  | 160      | 80          | 80        | 160       | 160           | 80            | 40            | 80         | 160         | <20           | 80         | MDCKX,MDCK1  | 05/06/2012 |
| 5                    | B/VICTORIA/6/2012             | 80                                                                   | 160      | 640         | 160       | 160       | 80            | 80            | 80            | 320        | 40          | <20           | 640        | mdck1        | 30/06/2012 |
| 6                    | B/SOUTH AUCKLAND/3/2012       | 160                                                                  | 160      | 80          | 80        | 160       | 160           | 80            | 80            | 160        | 320         | <20           | 160        | MDCKX,MDCK1  | 05/05/2012 |
| 7                    | B/VICTORIA/7/2012             | 160                                                                  | 160      | 160         | 80        | 160       | 160           | 80            | 40            | 160        | 320         | <20           | 320        | mdck1        | 02/07/2012 |
| 8                    | B/MACAU/60079/2012            | 80                                                                   | 80       | 320         | 80        | 160       | 80            | 80            | 80            | 320        | 40          | <20           | 320        | MDCK,MDCK1   | 07/02/2012 |
| 9                    | B/MACAU/200162/2012           | 160                                                                  | 160      | 80          | 80        | 160       | 320           | 80            | 80            | 160        | 320         | <20           | 320        | MDCK,MDCK1   | 07/02/2012 |
| 10                   | B/BRISBANE/36/2012            | 160                                                                  | 80       | 160         | 80        | 160       | 320           | 80            | 80            | 320        | 320         | <20           | 160        | mdck2        | 13/06/2012 |
| 11                   | A/WELLINGTON/9/2012           | 160                                                                  | 160      | 80          | 40        | 160       | 160           | 80            | 40            | 160        | 320         | <20           | 160        | mdckx,MDCK1  | 22/06/2012 |
| 12                   | B/VICTORIA/4/2012             | 160                                                                  | 160      | 80          | 40        | 160       | 160           | 40            | 40            | 160        | 320         | <20           | 320        | MDCK1        | 25/06/2012 |
| 13                   | B/VICTORIA/8/2012             | 160                                                                  | 80       | 80          | 40        | 80        | 160           | 40            | 40            | 80         | 160         | <20           | 160        | mdck1        | 04/07/2012 |

|          | Compilation: August 14, 2012                       | Haemagglutination Inhibition Assay - WHO Influenza Centre, Melbourne                                    |          |             |           |               |               |               |               |           |             |               |            |              |            |
|----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|-------------|-----------|---------------|---------------|---------------|---------------|-----------|-------------|---------------|------------|--------------|------------|
|          |                                                    | Reference Antisera                                                                                      |          |             |           |               |               |               |               |           |             |               |            |              |            |
|          | Sequenced                                          | 1         2         3         4         5         6         7         8         9         10         11 |          |             |           |               |               |               |               |           |             |               |            |              |            |
|          | Turkey number 85                                   | F982-<br>21D                                                                                            | F997-21D | F1145-21D   | F1151-19D | F1323-<br>21D | F1149-<br>19D | F1687-<br>21D | F1654-<br>21D | F2313-21D | F2313-21D   | F1880-<br>21D | Mab<br>184 |              |            |
|          |                                                    | E2                                                                                                      | E4       | mdckx,mdck1 | E5        | E3            | CELL          | E4            | E4            | MDCK1     | MDCKX,MDCK1 | E3            |            | Passage      | Date       |
|          | Reference Antigens                                 | BRIS/3                                                                                                  | FLORID/4 | STH AUST/5  | BANG/3333 | INDI/1        | BRIS/9        | WISC/1        | HBEI/158      | STHAUS/17 | MAL/412     | BRIS/33       | 1/40       | History      |            |
| Α        | B/BRISBANE/3/2007                                  | 1280                                                                                                    | 1280     | 80          | 640       | 640           | 1280          | 160           | 320           | 80        | 160         | <20           | 160        | E5           |            |
| В        | B/FLORIDA/4/2006                                   | 1280                                                                                                    | 1280     | 80          | 640       | 640           | 1280          | 160           | 640           | 160       | 320         | <20           | 160        | E4           |            |
| <u>C</u> | B/SOUTH AUSTRALIA/5/2008                           | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCKX.MDCK2  |            |
| <u>D</u> | B/BANGLADESH/3333/2007                             | 640                                                                                                     | 640      | 320         | 1280      | 640           | 640           | 320           | 640           | 320       | <20         | <20           | 320        | E6           |            |
| <u> </u> | B/INDIANA/1/2008                                   | 640                                                                                                     | 640      | 160         | 1280      | 640           | 640           | 320           | 320           | 160       | <20         | <20           | 320        | E3           |            |
| F        | B/BRISBANE/9/2008                                  | 80                                                                                                      | 160      | 640         | 320       | 320           | 80            | 80            | 160           | 320       | <20         | <20           | 320        | MDCKX, MDCK4 |            |
| G        | B/WISCONSIN/1/2010                                 | 640                                                                                                     | 640      | 320         | 640       | 640           | 640           | 320           | 640           | 320       | <20         | <20           | 320        | E4           |            |
| <u>н</u> | B/HUBEI WUJIAGANG/158/2009                         | 320                                                                                                     | 320      | 80          | 160       | 160           | 320           | 80            | 320           | 80        | <20         | <20           | 320        | E/           |            |
| <u>+</u> | B/BRISBANE/33/2008 (Victoria)                      | <20                                                                                                     | <20      | <20         | <20       | <20           | <20           | <20           | <20           | <20       | <20         | >2560         | <40        | E4           |            |
| J        | B/SOUTH AUSTRALIA/17/2012                          | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        |              |            |
| n        | B/WALATSIA/412/2012                                | 640                                                                                                     | 320      | 320         | 160       | 160           | 320           | 80            | 160           | 160       | 640         | <20           | 320        | MDCKX,MCDKZ  |            |
| 1        |                                                    | 1290                                                                                                    | 640      | 640         | 220       | 220           | 1290          | 220           | 640           | 640       | 640         | -20           | 220        |              | 16/06/2012 |
| 2        | B/SOUTH AUCKLAND/5/2012<br>B/SOUTH AUCKLAND/6/2012 | 640                                                                                                     | 640      | 320         | 320       | 320           | 640           | 320           | 320           | 640       | 640         | <20           | 320        |              | 17/06/2012 |
| 2        | B/SINGAPORE/10/2012                                | 640                                                                                                     | 640      | 1280        | 640       | 320           | 640           | 320           | 640           | 640       | 320         | <20           | 320        |              | 09/06/2012 |
| 4        | B/SINGAPORE/4/2012                                 | 160                                                                                                     | 160      | 640         | 320       | 160           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCK0, MDCK1 | 07/03/2012 |
| 5        | B/SINGAPORE/5/2012                                 | 320                                                                                                     | 320      | 1280        | 320       | 320           | 160           | 160           | 320           | 640       | 80          | <20           | 320        | MDCK2        | 14/02/2012 |
| 6        | B/SINGAPORE/6/2012                                 | 160                                                                                                     | 160      | 640         | 320       | 160           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCK0 MDCK1  | 20/02/2012 |
| 7        | B/SINGAPORE/7/2012                                 | 320                                                                                                     | 320      | 1280        | 320       | 320           | 320           | 160           | 320           | 640       | <20         | <20           | 320        | MDCK0, MDCK1 | 05/06/2012 |
| 8        | B/SINGAPORE/8/2012                                 | 320                                                                                                     | 320      | 640         | 320       | 320           | 160           | 160           | 320           | 320       | <20         | <20           | 320        | MDCK0, MDCK1 | 08/06/2012 |
| 9        | B/SINGAPORE/9/2012                                 | 160                                                                                                     | 160      | 1280        | 320       | 320           | 160           | 160           | 320           | 640       | <20         | <20           | 320        | MDCK0, MDCK1 | 08/06/2012 |
| 10       | B/SINGAPORE/11/2012                                | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCK0, MDCK1 | 12/06/2012 |
| 11       | B/SINGAPORE/15/2012                                | 320                                                                                                     | 320      | 640         | 320       | 320           | 160           | 160           | 320           | 320       | <20         | <20           | 320        | MDCK0, MDCK1 | 31/05/2012 |
| 12       | B/SINGAPORE/17/2012                                | 320                                                                                                     | 320      | 640         | 320       | 320           | 160           | 160           | 320           | 640       | <20         | <20           | 320        | MDCK0, MDCK1 | 16/02/2012 |
| 13       | B/VICTORIA/320/2012                                | 160                                                                                                     | 160      | 640         | 320       | 160           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCK1        | 27/07/2012 |
| 14       | B/PERTH/53/2012                                    | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCKX,MDCK1  | 26/04/2012 |
| 15       | B/PERTH/68/2012                                    | 320                                                                                                     | 320      | 640         | 320       | 320           | 320           | 160           | 320           | 640       | 80          | <20           | 160        | MDCKX,MDCK1  | 15/05/2012 |
| 16       | B/PERTH/84/2012                                    | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCKX,MDCK1  | 06/06/2012 |
| 17       | B/PERTH/114/2012                                   | 160                                                                                                     | 160      | 640         | 320       | 160           | 160           | 160           | 160           | 640       | <20         | <20           | 320        | MDCKX,MDCK1  | 24/06/2012 |
| 18       | B/PERTH/115/2012                                   | 160                                                                                                     | 160      | 640         | 320       | 320           | 160           | 160           | 160           | 320       | <20         | <20           | 320        | MDCKX,MDCK1  | 24/06/2012 |
| 19       | B/CHRISTCHURCH/505/2012                            | 320                                                                                                     | 160      | 320         | 320       | 320           | 320           | 160           | 80            | 320       | 320         | <20           | 160        | MDCK1        | 23/07/2012 |
| 20       | B/PERTH/54/2012                                    | 80                                                                                                      | 160      | 640         | 160       | 320           | 80            | 80            | 80            | 320       | <20         | <20           | 160        | MDCKX,MDCK1  | 02/05/2012 |
| 21       | B/PERTH/88/2012                                    | 80                                                                                                      | 80       | 640         | 320       | 160           | 80            | 80            | 160           | 320       | <20         | <20           | 320        | MDCKX,MDCK1  | 06/06/2012 |
| 22       | B/VICTORIA/526/2012                                | 320                                                                                                     | 160      | 320         | 160       | 320           | 320           | 80            | 80            | 160       | 640         | <20           | 320        | MDCK1        | 27/07/2012 |
| 23       | B/VICTORIA/524/2012                                | 160                                                                                                     | 160      | 80          | 80        | 160           | 160           | 80            | 80            | 160       | 320         | <20           | 160        |              | 20/07/2012 |
| 24       | D/PERIH/50/2012                                    | 80                                                                                                      | 80       | 640         | 320       | 320           | 08            | 80            | 80            | 320       | <20         | <20           | 320        |              | 14/04/2012 |
| 20       |                                                    | 80                                                                                                      | 80       | 640         | 160       | 320           | 80            | 80            | 80            | 320       | <20         | <20           | 160        |              | 08/05/2012 |
| 20       |                                                    | 160                                                                                                     | 160      | 320         | 160       | 160           | 160           | 80            | 40            | 320       | 640         | <20           | 320        | MDCK1        | 02/08/2012 |
| 21       | B/VICTORIA/525/2012                                | 160                                                                                                     | 160      | 80          | 80        | 160           | 160           | 40            | 80            | 160       | 320         | <20           | 160        | MDCK1        | 23/07/2012 |

TABLE 5.5 – B viruses (B/Yamagata lineage)

## FIGURE 5.5 Phylogenetic relationships among influenza B HA genes B/Victoria Lineage



0.0070

### FIGURE 5.6 Phylogenetic relationships among influenza B neuraminidase genes B/Victoria Lineage



0.0040



## FIGURE 5.7 Phylogenetic relationships among influenza B HA genes B/Yamagata Lineage

0.01
## FIGURE 5.8 Phylogenetic relationships among influenza B neuraminidase genes B/Yamagata Lineage



|          | Antinon             | Den   | N  | Passage |        | GMT  |       | %>/=40 |      | %>/=160 |      |
|----------|---------------------|-------|----|---------|--------|------|-------|--------|------|---------|------|
|          | Anugen              | Рор   | IN | History | % RISE | Pre  | Post  | Pre    | Post | Pre     | Post |
| B<br>Vic | B/Brisbane/60/2008* | Aus   | 20 | E6      | 35.0   | 27.3 | 98.5  | 50.0   | 80.0 | 25.0    | 55.0 |
|          |                     | Japan | 30 | E6      | 6.7    | 40.9 | 69.6  | 66.7   | 86.7 | 20.0    | 33.3 |
| B<br>Vic | B/Brisbane/12/2012  | Aus   | 20 | E3      | 50.0   | 24.6 | 117.1 | 45.0   | 90.0 | 20.0    | 50.0 |
|          |                     | Japan | 30 | E3      | 10.0   | 18.7 | 30.3  | 26.7   | 63.3 | 0.0     | 3.3  |
|          |                     | Eur   | 24 | E3      | 37.5   | 10.9 | 32.7  | 16.7   | 58.3 | 8.3     | 20.8 |

 TABLE 5.9

 HI serology assays of influenza type B/Victoria viruses – Young Adults

## TABLE 5.10HI serology assays of influenza type B/Victoria viruses – Older Adults

|          | Antigen             | Рор   | Ν  | Passage<br>History | % Rise | GMT  |      | %>/=40 |      | %>/=160 |      |
|----------|---------------------|-------|----|--------------------|--------|------|------|--------|------|---------|------|
|          |                     |       |    |                    |        | Pre  | Post | Pre    | Post | Pre     | Post |
| B<br>Vic | B/Brisbane/60/2008* | Aus   | 20 | E6                 | 35.0   | 12.3 | 40.0 | 30.0   | 65.0 | 0.0     | 15.0 |
|          |                     | Japan | 30 | E6                 | 13.3   | 18.7 | 34.8 | 36.7   | 53.3 | 16.7    | 33.3 |
| B<br>Vic | B/Brisbane/12/2012  | Aus   | 20 | E3                 | 30.0   | 13.7 | 44.4 | 35.0   | 70.0 | 0.0     | 15.0 |
|          |                     | Japan | 30 | E3                 | 23.3   | 14.1 | 29.6 | 23.3   | 53.3 | 3.3     | 16.7 |
|          |                     | Eur   | 24 | E3                 | 25.0   | 6.9  | 12.6 | 8.3    | 25.0 | 0.0     | 4.2  |

 TABLE 5.11

 HI serology assays of influenza type B/Yamagata viruses – Young Adults

|       | Antigon                    | Den   | NI | Passage History | % Rise | GMT  |       | %>/=40 |      | %>/=160 |      |
|-------|----------------------------|-------|----|-----------------|--------|------|-------|--------|------|---------|------|
|       | Antigen                    | гор   | IN |                 |        | Pre  | Post  | Pre    | Post | Pre     | Post |
|       | B/Wisconsin/12010**        | Aus   | 20 | E5              | 30.0   | 41.4 | 85.7  | 60.0   | 70.0 | 45.0    | 50.0 |
| B Yam |                            | Japan | 30 | E5              | 3.3    | 52.8 | 69.6  | 66.7   | 83.3 | 26.7    | 33.3 |
|       |                            | Eur   | 24 | E5              | 87.5   | 13.3 | 195.8 | 25.0   | 87.5 | 8.3     | 70.8 |
| B Yam | B/Victoria/525/2012        | Aus   | 20 | MDCK2           | 15.0   | 26.4 | 41.4  | 55.0   | 65.0 | 20.0    | 20.0 |
|       |                            | Japan | 30 | MDCK2           | 3.3    | 34.0 | 40.9  | 53.3   | 53.3 | 26.7    | 26.7 |
|       |                            | Eur   | 24 | MDCK2           | 87.5   | 19.4 | 195.8 | 45.8   | 95.8 | 12.5    | 62.5 |
|       | B/Massachusetts/2/2012     | Aus   | 20 | E3              | 15.0   | 37.3 | 72.1  | 60.0   | 65.0 | 30.0    | 50.0 |
| B Yam |                            | Japan | 30 | E3              | 6.7    | 69.6 | 85.7  | 76.7   | 83.3 | 43.3    | 40.0 |
|       |                            | Eur   | 24 | E3              | 79.2   | 23.8 | 239.7 | 45.8   | 91.7 | 8.3     | 70.8 |
| B Yam | B/Taiwan/1367/2012         | Eur   | 24 | MDCK3           | 87.5   | 10.6 | 123.4 | 20.8   | 87.5 | 4.2     | 54.2 |
| B Yam | B/Hubei-Wujiagang/158/2009 | Eur   | 24 | E6              | 75.0   | 12.2 | 179.6 | 25.0   | 83.3 | 8.3     | 66.7 |

## TABLE 5.12 HI serology assays of influenza type B/Yamagata viruses - Older Adults

|       |                            |       |    |                 | 0      |      |       |        |      |         |       |
|-------|----------------------------|-------|----|-----------------|--------|------|-------|--------|------|---------|-------|
|       | Antinon                    | Den   | Ν  | Passage History | % Rise | GMT  |       | %>/=40 |      | %>/=160 |       |
|       | Antigen                    | Рор   |    |                 |        | Pre  | Post  | Pre    | Post | Pre     | Post  |
|       | B/Wisconsin/12010**        | Aus   | 20 | E5              | 25.0   | 23.0 | 44.4  | 50.0   | 70.0 | 10.0    | 20.0  |
| B Yam |                            | Japan | 30 | E5              | 6.7    | 18.2 | 24.1  | 43.3   | 46.7 | 6.7     | 16.7  |
|       |                            | Eur   | 24 | E5              | 79.2   | 12.6 | 103.7 | 20.8   | 83.3 | 8.3     | 50.0  |
| B Yam | B/Victoria/525/2012        | Aus   | 20 | MDCK2           | 25.0   | 15.7 | 28.3  | 40.0   | 60.0 | 5.0     | 10.0  |
|       |                            | Japan | 30 | MDCK2           | 3.3    | 9.5  | 11.0  | 16.7   | 23.3 | 3.3     | 3.3   |
|       |                            | Eur   | 24 | MDCK2           | 79.2   | 12.6 | 106.8 | 25.0   | 87.5 | 0.0     | 50.0  |
|       | B/Massachusetts/2/2012     | Aus   | 20 | E3              | 30.0   | 23.8 | 38.6  | 50.0   | 65.0 | 15.0    | 15.0  |
| B Yam |                            | Japan | 30 | E3              | 6.7    | 20.9 | 27.0  | 40.0   | 50.0 | 10.0    | 20.0  |
|       |                            | Eur   | 24 | E3              | 75.0   | 12.6 | 80.0  | 29.2   | 79.2 | 4.2     | 41.7  |
| B Yam | B/Taiwan/1367/2012         | Eur   | 24 | MDCK3           | 83.3   | 7.1  | 67.3  | 8.1    | 75.0 | 0       | 29.17 |
| B Yam | B/Hubei-Wujiagang/158/2009 | Eur   | 24 | E6              | 70.8   | 11.9 | 95.1  | 25.0   | 79.2 | 8.3     | 50.0  |
|       |                            |       |    |                 |        |      |       |        |      |         |       |

\*Vaccine strain for Aus/Japan \*\*Vaccine strain for Eur